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‣A clusterisation approach…  
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Introduction

[1]  J. M. Lattimer, Ann. Rev. Nucl. Part. Sci. 62 (2012) 485.	

[2]  A. Burrows, Rev. Mod. Phys. 85 (2013) 245. 	

[3]  A. Gezerlis, I. Tews, E. Epelbaum, S. Gandolfi, K. Hebeler, A. Nogga, A. Schwenk, Phys. Rev. Lett. 111 (2013) 032501

‣ The equation of state (EOS) of nuclear matter:  

‣ of fundamental interest 

‣ object of intense theoretical efforts since several decades 

‣ an important ingredient in modeling fascinating astrophysical phenomena such as: 

‣ compact stars [1] 

‣ core collapse supernovae[2] 

‣ The calculation of the nuclear EOS from first principles, such as very recently attempted in 
[3], is a very complex task. 

‣ Nuclear physics based on empirical observations => even the most ’fundamental’ theory of 
nuclear forces requires a confrontation with empirical facts. 

‣ 1st method, from astrophysicists:  from ’neutron’ star masses and radii. But missing:  

‣ precise model-independent radii, 

‣ composition of the matter in the center of the stars.

NGC 1952, Crab Nebula 
pulsar neutron star imaged by 
the NASA/ESA Hubble Space 
Telescope
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Introduction
IQMD Au+Au@2 A.GeV simulation

‣ Alternative method: in earth laboratories, heavy ion collisions over a wide range of incident 
energies, system sizes and compositions.  
‣ limited to Ebeam<10 A.GeV ⬅ some kind of a clock is available (sound velocity versus 

participant-spectator interaction). 
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IQMD Au+Au@2 A.GeV simulation

‣ Alternative method: in earth laboratories, heavy ion collisions over a wide range of incident 
energies, system sizes and compositions.  
‣ limited to Ebeam<10 A.GeV ⬅ some kind of a clock is available (sound velocity versus 

participant-spectator interaction). 

z

x

V2

yY = rapidity  
pt = transverse momentum 
ΦR = reaction plane azimuthal angle

’Elliptic flow’:  cos(2(Φ-ΦR)) mode, 
competition between ‘in-plane’ (V2>0) and  
‘out-of-plane’ ejection (V2<0).

V1 = ‘side/directed flow’, <px/pt2>

Flows at high density in heavy-ion collisions
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Constraining the stiffness of the EOS  
with the elliptic flow. 

‣ Present work: improve the situation in the 1 A.GeV regime, from 
extensive flow data published recently by the FOPI Collaboration  
(Au+Au @ 0.4-1.5 A.GeV) [4]  
➜ close look at the elliptic flow data with improvements: 
‣ 1) not only protons: d, t, 3He 4He having larger flow signals than 

single nucleons. 
‣ 2) not only mid-rapidity data: 80% of the target- projectile 

rapidity gap. 

[4] W. Reisdorf, et al. (FOPI Collaboration), Nucl. Phys. A 876 (2012) 1.
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Constraining the stiffness of the EOS  
with the elliptic flow. 

� IQMD-HM
6 IQMD-SM

-0.5 0.0 0.5
y0

-0.04

0.00

0.04

0.08

-v
2

IQMD-HM
IQMD-SM
� FOPI

-0.5 0.0 0.5
y0

Au+Au 1.2A GeV  0.25<b0<0.45  protons
Elliptic flow

5

IQMD:  J. Aichelin, Phys. Rep. 202 (1991) 233.	

	
 	
 C. Hartnack, et al., Eur. Phys. J. A 1 (1998) 151.           
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Constraining the stiffness of the EOS  
with the elliptic flow. 

Complete shape of v2(y0): 
a new observable: 
v2n = |v20| + |v22|,  
from fit  
v2(y0) = v20 + v22 . y0 

!
➜ v2n(Ebeam) varies by a factor 
≈1.6, >> measured uncertainty 
(≈1.1) 
➜ clearly favors a ’soft’ EOS. 
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Constraining the stiffness of the EOS  
with the elliptic flow. 
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‣ Phenomenological EOS  
H M a n d S M i n c l u d e t h e 
saturation point at ρ/ρ0 = 1,  
E/A = −16 MeV by construction. 

‣ ➜ fixes the absolute position of 
the curves:  

‣ the heavy ion data are only 
sensitive to the shape, i.e. the 
pressure (derivative).  

‣ ➜ a stiff EOS, characterised by  
K 0 = 3 8 0 M e V i s n o t i n 
agreement with the flow data in 
the incident energy range 0.4 - 
1.5 A.GeV. 
!
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Which density has been probed? 

IQMD transport model[5,6] 
various phenomenological 
EOS’s:  
» ‘stiff’ = H & HM (+ 

momentum dependent), 
K0 = 380 MeV 

» ‘soft’ = S & SM 
(+momentum dependent), 
K0 = 200 MeV. 

Here: protons in Au+Au at 
1.5 A.GeV, b=3 fm

= time / passing time

Density

Number of collisions

Mean-field 
momentum transfer

at centre-of-mass

full target-projectile overlap

Purpose = characterise 
which ’typical’ densities 
where probed in the FOPI 
experiments 
=> at which time V2 develops, 
and which conditions 
influence it the most.

8
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Which density has been probed? 

UrQMD Au+Au at 1.5 A.GeV, b=3 fm
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‣ The elliptic flow in his final 
dependence with rapidity 
develops fast: during the 
passing time.

9

‣ The elliptic flow in strength and 
shape is mostly influenced by the 
force of the mean field 

‣ The ’ typ ica l ’ dens ity of the 
’measured’ EOS can be built from 
the mean value weighted by this 
force up to the passing time.
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Simulations: the scenario

UrQMD Au+Au at 1.5 A.GeV, b=3 fm

‣ The density range, relevant to 
the EOS evidenced by the FOPI 
Collaboration, spans in the range 
ρ = (1.25 − 2.0) ρ0.

10
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SACA: a clusterisation approach…

11

E=E1
kin +E2

kin +V1+V2

2 steps:  
1) Pre-select good «candidates» for fragments according to proximity criteria: real space 
coalescence = Minimum Spanning Tree (MST) procedure.

!
* Simulated Annealing Procedure: PLB301:328,1993; later called SACA.  
* P.B. Gossiaux, R. Puri, Ch. Hartnack, J. Aichelin, Nuclear Physics A 619 (1997) 379-390	

* 2010 version: publication in progress…
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E’=E1’
kin +E2’

kin +V1’+V2’

If E’ < E take the new configuration
If E’ > E take the old with a probability depending on E’-E
Repeat this procedure very many times... 
It leads automatically to the most bound configuration.
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coalescence = Minimum Spanning Tree (MST) procedure.
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SACA: a clusterisation approach…

12

Ingredients of the binding energy of the clusters : 
① Volume component: mean field (Skyrme, dominant), for NN, NΛ (hypernuclei)  
② Surface effect correction: Yukawa term. 

③ Asymmetry energy : 23.3 MeV.(<ρ’B>)(γASY-1).(<ρ’n>-<ρ’p>)2/<ρ’B> 
④ Extra « structure » energy (N,Z,ρ) = BMF(ρ).((Bexp-BBW)/(BBW-BCoul-Basy))(ρ0) 

⑤ 3He+n recombination. 
⑥ Secondary decay: GEMINI.
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Ingredients of the binding energy of the clusters : 
① Volume component: mean field (Skyrme, dominant), for NN, NΛ (hypernuclei)  
② Surface effect correction: Yukawa term. 

③ Asymmetry energy : 23.3 MeV.(<ρ’B>)(γASY-1).(<ρ’n>-<ρ’p>)2/<ρ’B> 
④ Extra « structure » energy (N,Z,ρ) = BMF(ρ).((Bexp-BBW)/(BBW-BCoul-Basy))(ρ0) 

⑤ 3He+n recombination. 
⑥ Secondary decay: GEMINI.

➲ Remarks:  

• Advantage of SACA : the fragment partitions can reflect the early dynamical conditions 
(Coulomb, density, flow details, strangeness...). Fragment partitions already determined at the 
passing time of the colliding system.   

• In the framework of QMD, HSD, <ρclusters> ≺ 0.5. ρ0 ⇒ isotope yields of SACA with Easy probe it 

at sub-saturation densities
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SACA: a clusterisation 
approach…

13

simple coalescence 
no Basy, no Bstruct. 
Basy, no Bstruct. 
Basy, + Estruct.

IQMD-SACA central Xe+Sn @ 100 A.MeV
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simple coalescence 
no Basy, no Bstruct. 
Basy, no Bstruct. 
Basy, + Estruct.

IQMD-SACA central Xe+Sn @ 100 A.MeV

FOPI

W. Reisdorf and the FOPI Collaboration NPA 848 (2010) 366–427

IQMD-SACA
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Another application of SACA : hypernuclei production

Λ
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Towards the determination of the stiffness of the 
asymmetry energy.

15

Directed flow

FOPI Collaboration / NPA 876 (2012) 1-60

FOPI γasy = 1
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Directed flow

FOPI Collaboration / NPA 876 (2012) 1-60

FOPI γasy = 1γasy = 0.5γasy = 1.5
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Towards the determination of the stiffness of the 
asymmetry energy.

16

γasy = 1

FOPI Collaboration / NPA 876 (2012) 1-60
Elliptic flow
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Towards the determination of the stiffness of the 
asymmetry energy.

16

γasy = 1

FOPI Collaboration / NPA 876 (2012) 1-60
Elliptic flow

!
The differences in t/3He elliptic flow increases with energy 
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Towards the determination of the stiffness of the 
asymmetry energy.

17

FOPI

PRELIMINARY
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Towards the determination of the stiffness of the 
asymmetry energy.

18

The higher the bombarding energy, the stronger the sensitivity. 

at mid-rapidity



Arnaud Le Fèvre -  NuSYM14 – 7-9 July 2014 – Liverpool 

Summary and discussion

19



Arnaud Le Fèvre -  NuSYM14 – 7-9 July 2014 – Liverpool 

Summary and discussion
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protons and other light isotopes -> clear discrimination for soft EOS. 
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Summary and discussion
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indication of 0.5<= γasy < 1 by confronting IQMD-SACA to FOPI data. 
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 ➲ See AsyEOS experiment: ongoing analysis,  
forthcoming talks by P. Russotto and J. Brzychczyk.  
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Comparison to microscopic calculations

Katayama 2013
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Dirac-Brueckner-Hatree-Fock (DBHF) 
calculation[10] using the Bonn A[11] 
nucleon-nucleon potential

(three representative microscopic calculations compared with our new constraints)	


[10]  R. Brockmann, R. Machleidt, Phys. Rev. C 42 (1990) 1965. 	


[11]  T. Katayama, K. Saito, Phys. Rev. C 88 (2013) 035805. 
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Comparison to microscopic calculations

Sammarruca 2012
� DBHF
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(three representative microscopic calculations compared with our new constraints)	


2 symmetric nuclear matter EOS’s 
from [12]: 

1) ’DBHF’ = meson theoretic potential 
together with the DBHF method 
2) ’Chiral’= use of effective field 
theory (EFT) with density dependent 
interactions derived from leading 
order chiral three-nucleon forces.

[12]  P. Danielewicz, G. Odyniec, Phys. Lett. B 157 (1985) 168. 
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Comparison to microscopic calculations

Fritsch 2005
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(three representative microscopic calculations compared with our new constraints)	


Using the chiral approach[13]: 2 rather 
different EOS’s  including or not 
virtual ∆ excitations.  
» the virtual ∆-excitations help locate 

the EOS at the right horizontal 
place around ρ = 0.16 fm−3. 

» the ∆ leads to a rather marked 
stiffening of the EOS (K0 = 304 
MeV)  

» because ’cold’ EOS ? 
» finite temperature in the reaction => 

the ∆ are real rather than virtual. 
The theoretical ’∆ stiffness’ could 
then be a dispersion effect rapidly 
changing with temperature.

[13]  S. Fritsch, N. Kaiser, W. Weise, Nucl. Phys. A 750 (2005) 259. 
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Beam energy dependence of elliptic flow

v2 at mid-rapidity elliptic flow 
➢ pressure gradient of compression 

zone 
➢ shadowing of spectators 
➢ at low energies 

− attraction due to mean field of 
nucleons  

➢ at high energies 
− lacking shadowing of 

spectators
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Elliptic flow and the nuclear matter EOS

P. Danielewicz et al. 
Science 298, 1592 (2002)

elliptic flow
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Elliptic flow and the nuclear matter EOS

P. Danielewicz et al. 
Science 298, 1592 (2002)

elliptic flow

side flow
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