What the symmetry energy has to say about neutron star radii and the neutron star crust

Andrew W. Steiner (INT/U. Washington)

July 7, 2014

With: Edward F. Brown (MSU), Farrukh J. Fattoyev (TAMU-Commerce), Stefano Gandolfi (Los Alamos), James M. Lattimer (Stony Brook), and William G. Newton (TAMU-Commerce)

Outline

- Neutron star masses and radii
- Recent observational developments
- Connection to the symmetry energy
- Pulsar glitches and moments of inertia
- Entrainment

Neutron Star Masses and Radii and the EOS

- Neutron stars (to better than 10%) all lie on one universal mass-radius curve (Largest correction is rotation - work in progress)
- Recent measurement of two $2~M_{\odot}$ neutron stars Demorest et al. (2010), Antoniadis et al. (2013)
- As of 2007 neutron star radii constrained to 8-15 km, now 10-13 km Lattimer and Prakash (2007); Steiner, Lattimer and Brown (2013)

- Einstein's field equations provide a 1-1 correspondence
- Formally an underconstrained problem, but effectively over constrained if you have enough precise data (we don't yet)

The M-R curve and the EOS of Dense Matter

Steiner, Lattimer, and Brown (2013); red and green outlines 68% and 95% regions

- Full Bayesian MCMC sampling of the likelihood (times prior)
- Radius of a 1.4 solar mass neutron star is 10.4 12.9 km
- Note the uncertainty in the EOS at a few times saturation
- These results are limited by strong systematic uncertainties
- No assumption that pressure is correlated between low and high-densities

The M-R curve and the EOS of dense matter

EOS Mode	el Data modifications	$R_{95\%}>$	$R_{68\%}$	$R_{68\%}$ <	$R_{95\%}$ <
			(k	m)	
Variations in the EOS model					
A	-	11.18	11.49	12.07	12.33
В	-	11.23	11.53	12.17	12.45
C	-	10.63	10.88	11.45	11.83
D	-	11.44	11.69	12.27	12.54
Variations in the data interpretation					
A	I	11.82	12.07	12.62	12.89
A	II	10.42	10.58	11.09	11.61
A	III	10.74	10.93	11.46	11.72
A	IV	10.87	11.19	11.81	12.13
A	V	10.94	11.25	11.88	12.22
A	VI	11.23	11.56	12.23	12.49
Global limits		10.42	10.58	12.62	12.89

Steiner, Lattimer, and Brown (2013)

- Critical component: trying different EOS parameterizations and different interpretations of the data
- Model C allows for strong phase transitions
- Try several different models to assess systematics

As of last year...

Results from Guillot et al. (2013) slightly adapted for Lattimer Lattimer and Steiner (2014) and Steiner (2014) before any assumption about the M-R curve

- $R_{\text{NS in }\omega \text{ Cen}}$: 11 km or 20 km!
- $R_{\rm NS in NGC 6397} \sim 7 \, \rm km?$
- ullet We tried different N_H values, different distances, and Helium atmospheres
- We obtained Bayes factors of ~1200 for alternate models

Recent Updates

- Heinke et al. (2014) confirms smaller N_H values for ω Cen with different model for the ISM and new data
- Confirmation of expectations from nuclear physics
- Radius ranges don't change that much from Steiner et al. (2013)

Heinke et al. (2014)

The Nuclear Symmetry Energy

Steiner et al. (2005)

- $S(n_B) \equiv E_{\text{neut}}(n_B) E_{\text{nuc}}(n_B)$
- S is the value at the nuclear saturation density $S = S(n_0)$
- L is the derivative, $L = 3n_0S'(n_0)$

Bridging Nuclear and Astro-physics

Neutron Star Constraints on L

Steiner and Gandolfi (2012) (IAS results have since come down)

Lattimer and Steiner (2013)

- Neutron stars strongly constrain L
- We also found $R_n R_p < 0.2 \text{ fm}$ Confirmed by MAMI data

Structure of Matter in the Neutron Star Crust

Picture from N. Chamel

- Neutron-rich nuclei
- Sea of superfluid neutrons
- Crust-core transition

Pulsar Glitch Mechanism

Picture from B. Link

- Superfluid component, decoupled from rotation at the surface
- Natural to associate the superfluid component with the superfluid neutrons in the crust
- What is the mechanism for the sudden change?
- Superfluid vortices pinned to the lattice
- Neutron star spins down, vortices bend creating tension, eventually they must shift lattice sites
- Quasi-free neutrons are entrained with the lattice Chamel 2012, Chamel et al. 2013

Is There Enough Superfluid in the Crust?

- We require 1.6% of *I* to explain glitches in Vela Link, Epstein, and Lattimer (1999)
- Entrainment: 75-85% of otherwise superfluid neutrons 'connected' to the lattice

N. Chamel (2012)

 Current M and R observations suggest there is not enough Iin the crust

See Andersson et al. (2012)

 Unless the systematics force much larger neutron star radii and P_t is large

Steiner et al. (2014); black and red are with M & R observations, blue contours are with

 $I = 70 \text{ M}_{\odot} \text{ km}^2$

How to determine the symmetry energy (at the saturation density)

- Neutron star radii are great at determining L, but experimental information is probably better and/or faster
- Theory methods work great for neutron matter, but nuclear matter seems difficult
- A lot of work is focused on finding the 'best' energy density functional: this doesn't necessarily help

We need:

- Several models, of comparable accuracy, all fit to the same data set which is optimized to ensure that
 - 1. systematics from model-dependence
 - and uncertainties within each model are both small.
- 180 140 120 100 40 40 40 40 20 0 1 2 3 4 5 6 -E(137Sn)

- Plus a bit of care with our fitting,
- and probably some information from giant resonances

Steiner (2014); Fit to a small range of masses

Steiner (2014); Fit to all measured masses

Status

- Currently available neutron star mass and radius observations constrain the universal neutron star M-R curve
 - Neutron star radii are likely between 10.4 and 12.9 km
 - We now have constraints on the EOS
 - $\circ 60 < I < 75 M_{\odot} \text{ km}^2$
 - $0.1 < \lambda < 3 \times 10^{36} g \text{ cm}^2 \text{ s}^2$
- Constrain the nucleon-nucleon interaction and QCD.
 - \circ (41) 43 MeV < L < 67 (83) MeV
- ullet Current observations imply there is not enough I to explain glitches
- But we need to know more about entrainment
- We can make real progress in determining S and L at the saturation density