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Neutron Star Masses and Radii and the EOS

e Neutron stars (to better than 10%) all lie on one universal mass-radius curve
(Largest correction is rotation - work in progress)

e Recent measurement of two 2 Mg neutron stars
Demorest et al. (2010), Antoniadis et al. (2013)

e As of 2007 neutron star radii constrained to 8-15 km, now 10-13 km
Lattimer and Prakash (2007); Steiner, Lattimer and Brown (2013)
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Radius Log ¢

e Einstein's field equations provide a 1-1 correspondence

e Formally an underconstrained problem, but effectively over constrained if you
have enough precise data we don't yet
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Steiner, Lattimer, and Brown (2013); red and green outlines 68% and 95% regions
Full Bayesian MCMC sampling of the likelihood (times prior)
Radius of a 1.4 solar mass neutron star is 10.4 - 12.9 km

Note the uncertainty in the EOS at a few times saturation
These results are limited by strong systematic uncertainties

No assumption that pressure is correlated between low and high-densities
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The M-R curve and the EOS of dense matter

EOS Model Data modifications Rgs~ Resn> Resne Rosop<
(km)

Variations in the EOS model

A : 11.18 11.49 12.07 12.33
B . 11.23 11.53 12.17 12.45
C - 10.63 10.88 11.45 11.83
D . 11.44 11.69 12.27 12.54
Variations in the data interpretation
A I 11.82 12.07 12.62 12.89
A I1 10.42 10.58 11.09 11.61
A I11 10.74 10.93 11.46 11.72
A IV 10.87 11.19 11.81 12.13
A \% 1094 11.25 11.88 12.22
A VI 11.23 11.56 12.23 12.49
Global limits 10.42 10.58 12.62 12.89

Steiner, Lattimer, and Brown (201 3)

e Critical component: trying different EOS parameterizations and different interpretations of

the data
e Model C allows for strong phase transitions
¢ Try several different models to assess systematics



As of last year...
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Results from Guillot et al. (2013) slightly adapted for Lattimer Lattimer and Steiner (2014)
and Steiner (2014) before any assumption about the M-R
curve

® RNSine Cen - 11 km or 20 km!

® RnsinNGC 6397 ~ 7 km?
¢ We tried different Ny values, different distances, and Helium atmospheres
¢ We obtained Bayes factors of ~1200 for alternate models
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e Heinke et al. (2014) confirms

smaller Ng values for @ Cen

with different model fo
ISM and new data

e Confirmation of expec!
from nuclear physics

r the

ations

e Radius ranges don't change
that much from Steiner et al.

(2013)
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The Nuclear Symmetry Energy
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Steiner et al. (2005)

e S(ng) = Eneut(np) — Enuc(np)
e Sis the value at the nuclear saturation density S = S(np)
e Listhe derivative, L = 3nyS’(np)



Bridging Nuclear and Astro-physics

Heavy lon Collisions

e

Steiner, Prakash, Lattimer, and Ellis (2005)




Neutron Star Cons
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e Neutron stars strongly constrain L

e Wealso foundR, — R, < 0.2 fm
Confirmed by MAMI data
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Structure of Matter in the Neutron Star Crust

FPressure ionizafon  Newtronization Newtron drip Pasm phase Proton drip  Uniform marter

10 10 10" 10" density (gfcm’)

'I iiaooggeg
e o0 20000000
30000000

@ @
Envelope Outer crusi Inner crusi

{reeer cabeaerns metitrewt Fich mucled, ¢ rdclennr clusrers,

— T = s " o
Solid crusi Mantle Outer core
bexly cemtered cubic i lear sk np.e
I'_"rm.frm.l’} .ful‘il'l'a':'

Picture from N. Chamel

e Neutron-rich nuclei
e Sea of superfluid neutrons
e Crust-core transition
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20 40
Negele and Vautherin (1973!)
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Pulsar Glitch Mechanism

slow, outward ] SUpEFﬂUid comp(}nent,

"~ . vortex motion  fast, outward

motion of <1015 vortioss decoupled from rotation at the

vortices start

_ to move again su rfaCE

superfluid — ~ ~

—

vortices nearly = ~ _
stop

e e Natural to associate the
SN superfluid component with the

superfluid neutrons in the crust

rotational eq. rot. eq. restored

e What is the mechanism for the
sudden change?

Picture from B. Link

e Superfluid vortices pinned to the lattice

e Neutron star spins down, vortices bend creating tension, eventually they
must shift lattice sites

¢ Quasi-free neutrons are entrained with the lattice
Chamel 2012, Chamel et al. 2013
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Is There Enough Superfluid in the Crust?

e We require 1.6% of I to explain glitches in Vela
Link, Epstein, and Lattimer (1999)

e Entrainment: 75-85% of otherwise superfluid neutrons 'connected' to

the lattice
N. Chamel (2012)
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e Current M and R observations E”'“h - . I

suggest there is not enough 7 o0 L -

in the crust - I . :
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much larger neutron star radii 02 03 04 05 06 07 08

> 3
and P; is large , (MeV/fm?)
d 5 Steiner et al. (2014); black and red are with M &

R observations, blue contours are with

I =70 Mg km?



How to determine the symmetry energy (at the saturation density)

e Neutron star radii are great at determining L, but experimental information is probably better and/or faster
¢ Theory methods work great for neutron matter, but nuclear matter seems difficult
A lot of work is focused on finding the 'best' energy density functional: this doesn't necessarily help

We need:
¢ Several models, of comparable accuracy,

all fit to the same data set ¢ Plus a bit of care with our fitting,
which is optimized to ensure that e and probably some information from giant
1. systematics from model-dependence resonances

2. and uncertainties within each model
are both small.
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Status

Currently available neutron star mass and radius observations constrain
the universal neutron star M — R curve

o Neutron star radii are likely between 10.4 and 12.9 km
o We now have constraints on the EOS

o 60<l<75Mg km?
01<A<3x%x10%gcm? s?

Constrain the nucleon-nucleon interaction and QCD.
o (41)43 MeV < L < 67 (83) MeV
Current observations imply there is not enough I to explain glitches

But we need to know more about entrainment

We can make real progress in determining S and L at the saturation

density
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