

Constraining the equation of state of neutron stars with gravitational wave observations Walter Del Pozzo

Outline

- The second generation of gravitational waves detectors
- Gravitational wave emission from inspiral of compact binary systems
 - Matter effects
- Inferring the tidal deformability of neutron stars
- Systematics
- Summary

The gravitational wave detectors network

- Two LIGO instruments in Hanford, WA and Livingstone, LO
- Virgo in Cascina, IT
- LIGO India, IN, and KAGRA, JP, will follow

Expected sensitivity

Abadie et al, arxiv: 1304.0670

Detection rates

- Horizon distance ~ 200 Mpc for binary neutron star systems (BNS)
- BNS coalescences are the most likely sources for first detection

Source ^a	$\dot{N}_{\rm low}$	$\dot{N}_{ m re}$	$\dot{N}_{ m high}$	Ňmax
	1 1			- max
	yr ⁻¹	${ m yr}^{-1}$	${ m yr}^{-1}$	yr^{-1}
NS-NS	2×10^{-4}	0.02	0.2	0.6
NS-BH	7×10^{-5}	0.004	0.1	
BH-BH	2×10^{-4}	0.007	0.5	
IRI into IMBH			$< 0.001^{b}$	0.01^{c}
MBH-IMBH			$10^{-4 d}$	10^{-3e}
NS-NS	0.4	40	400	1000
NS-BH	0.2	10	300	
BH-BH	0.4	20	1000	
IRI into IMBH			10^{b}	300^{c}
MBH-IMBH			0.1^d	1^e
	NS-NS NS-BH BH-BH IRI into IMBH IMBH-IMBH NS-NS NS-BH BH-BH IRI into IMBH IMBH-IMBH	$\begin{tabular}{ c c c c c } & yr & & & & & & & & & & & & & & & & & $	$\begin{tabular}{ c c c c c c } & yr & yr \\ \hline NS-NS & 2 \times 10^{-4} & 0.02 \\ \hline NS-BH & 7 \times 10^{-5} & 0.004 \\ \hline BH-BH & 2 \times 10^{-4} & 0.007 \\ \hline IRI into IMBH \\ \hline IMBH-IMBH & & & \\ \hline NS-NS & 0.4 & 40 \\ \hline NS-BH & 0.2 & 10 \\ \hline BH-BH & 0.4 & 20 \\ \hline IRI into IMBH \\ \hline IMBH-IMBH & & & \\ \hline \end{tabular}$	$\begin{tabular}{ c c c c c c c } & yr & yr & yr \\ \hline NS-NS & 2 \times 10^{-4} & 0.02 & 0.2 \\ \hline NS-BH & 7 \times 10^{-5} & 0.004 & 0.1 \\ \hline BH-BH & 2 \times 10^{-4} & 0.007 & 0.5 \\ \hline IRI into IMBH & & & & & & & & & & \\ \hline IMBH-IMBH & & & & & & & & & & & & & & & & & & &$

Abadie et al, arxiv:1003.2480

BNS coalescence

Merger

- The merger of a BNS systems yields the most information about the equation of state (EOS)
 - complicated physics
 - little analytical insight
- From numerical simulations:
 - Hard EOS (top): milliseconds lived hypermassive NS then collapse to a BH
 - Soft EOS (bottom): prompt collapse to a black hole (BH)

Read et al, <u>arxiv:0901.3258</u>

Merger

- The merger happens at high frequency (~2000 Hz)
- Poor sensitivity of the detectors

EOS signature during the inspiral

 The detectors will be sensitive to the inspiral part of the signal

 $h(t) = A(t)\cos(\Phi(t))$

Tidal deformations change the phase of the gravitational wave

$$\Phi(t) = \Phi_{\rm PP}(t) + \Phi_{\rm tidal}(t)$$

EOS signature during the inspiral

• Tidal effects enter through the tidal deformability

$$Q_{ij} = -\lambda(\text{EOS}; m)\tau_{ij}$$

quadrupole moment

tidal field of companion star

• Tidal deformability function

$$\lambda(m) = \frac{2}{3} k_2 R^5(m)$$
 second Love number neutron star radius

Hinderer et al, arxiv:0711.2420

Tidal deformability

- Tidal effects show at O((v/c)¹⁰) (5th post-Newtonian order)
- Known up to O((v/c)¹²) (6th post-Newtonian order)

Measurability of tidal deformability

- Preliminary studies (based on Fisher information matrix) indicate that adLIGO/Virgo might be able to measure the softest EOS (e.g. Hinderer et al, <u>arxiv:0911.3535</u>)
- Fisher matrix studies find the minimum uncertainty attainable in measuring a parameter
 - Cramer-Rao lower bound

Hinderer et al, arxiv:0911.3535

Measurability of tidal deformability

 Bayesian formalism allows straight-forward computation of constraints from multiple observations:

$$p(EOS|e_1,\ldots,e_n) = p(EOS) \prod_{i=1}^n \frac{p(e_i|EOS)}{p(e_i)}$$

- Bayesian analysis of astrophysical population of BNS
 - non-spinning signals analysed in synthetic advanced LIGO/Virgo noise

Del Pozzo et al, arxiv:1307.8338

Series expansion of $\lambda(m)$

- Inferring directly the function $\lambda(m)$ is difficult
- Expand it in Taylor series and measure its coefficients:

$$\lambda(m) = \sum_{k=0}^{\infty} \frac{\lambda_k}{k!} \left(\frac{m - m_0}{M_{\odot}}\right)^k$$

- For a given equation of state, the λ_k are unique, hence the same for all sources

Series expansion of $\lambda(m)$

- The zeroth order coefficient at $1.4M_{\odot}$ is measurable
- Discriminate among soft, hard and intermediate EOS with O(20) events

Extensions

- Neutron stars have spins
 - oblate due to their rotation, determined by their EOS
 - it affects their gravitational wave emission
- Depending on the EOS, the inspiral terminates earlier than the last stable orbit
 - contact between the two stars

Extensions

- Depending on the typical spin magnitude, the measurability of $\lambda(m)$ is degraded
- However < O(50) events seem sufficient for a 95%
 CL statement

Agathos et al, in preparation

Caveats

- All studies assume assume that the waveform is known *perfectly*
- This is not the case, already serious uncertainties in the post-Newtonian expansion
- Mismatches in waveform models and unknown high post-Newtonian orders induce systematic effects which hinder our capacity to measure tidal effects (Favata, <u>arxiv:1310.8288</u>)

Buonanno et al, arxiv:0907.0700

Systematic effects

 Bayesian study from Wade et al confirms this picture

Wade et al, <u>arxiv:1402.5156</u>

Hybrid waveforms

- Promising route is the hybridisation of numerical waveforms
 - procedure consists in "stitching" together a low frequency analytical model and a high frequency numerical waveform
- Analysis of the systematics shows that analytical waveforms give the right idea for the accuracy of λ(m) measurement

Summary

- Gravitational waves can probe the nuclear physics of neutron stars
- Merger and post-merger dynamics potentially offers deepest insights
 - no parametrised model, only numerical
 - hybrid waveforms?
- Inspiral phase yields weaker measurements
 - few tens sources should constrain the tidal deformability function
- Uncertainty in the waveform models
 - Systematics