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Introduction
Motivation for Work

• The maximum mass and radius of a Neutron Star depends on the
Equation of State (EOS) used

• The Gogny force is a finite range force and its ability to predict bulk
properties of Infinite Nuclear Matter (INM) is relatively unexplored

• 10 Gogny type forces were examined and their bulk properties were
evaluated in a Hartree-Fock framework

• The forces were applied to Neutron Star Matter to produce
maximum masses, radii, and composition
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Many Body Forces
Single Particle Energy

We find the total single particle energy within a Hartree-Fock mean field
approximation:

εk1σ1τ1 = 〈k1 σ1 τ1| T̂ |k1 σ1 τ1〉

+
1

(2π)
3

∑
σ2

∑
τ2

∫ kF

0

d3k2
1

2
〈k1 σ1 τ1, k2 σ2 τ2| V̂ |k1 σ1 τ1, k2 σ2 τ2〉

Where kF is the Fermi momentum

kF =
(
3π2ρ

) 1
3

and ρ is the number density of nucleons in nuclear matter
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Many Body Forces
Energy Per Particle

To find the total energy of the system we now integrate over all k1:

ETotal =
1

(2π)
3

∑
σ1

∑
τ1

∫ kF

0

d3k1

[
〈k1 σ1 τ1| T̂ |k1 σ1 τ1〉

+
1

(2π)
3

∑
σ2

∑
τ2

∫ kF

0

d3k2
1

2
〈k1 σ1 τ1, k2 σ2 τ2| V̂ |k1 σ1 τ1, k2 σ2 τ2〉

]

• Now we are able to examine a two-body interaction, V̂

• Many two body interactions exist, e.g Skyrme

• This work focusses on the Gogny type interaction
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The Gogny Interaction
Beyond Zero Range

The Gogny Force

VNN (r) =

2∑
i=1

[Wi +BiPσ −HiPτ −MiPστ ] e
~−r2

µ2
i

+

2∑
i=1

t0i (1 + x0iPσ) ρ
αi (~r) δ (~r)

• The operator Pσ (Pτ ) is the spin (isospin) exchange operator

〈σ1, σ2|Pσ |σ1, σ2〉 = 〈σ1, σ2| σ2, σ1〉 = δσ1σ2

• Remaining 14 variables are free parameters used to define the force
• Fit to properties of finite nuclei
• Only 10 appear so far in literature compared to >100 for Skyrme
• Application to Neutron Star Matter not well explored
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The Gogny Interaction
Energy Per Particle
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Normal nuclear matter has a saturation density at around 0.16 nucleons
per fm3 and has an energy of approximately -16 MeV
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The Gogny Interaction
Symmetry Energy and Slope

Symmetry Energy:

ESym (ρ) =
1

2!

δ2E (ρ, β)

δβ2

∣∣∣∣
β=0

• Influences ratio of protons to neutrons in a Neutron Star

Slope Parameter, L:

L = 3ρ0
δESym (ρ)

δρ

∣∣∣∣
ρ0

• Generally accepted to lay between 30 MeV and 100 MeV

• Influences how pressure changes with density (stiffness)

8 / 16



The Gogny Interaction
Symmetry Energy and Slope

Symmetry Energy:

ESym (ρ) =
1

2!

δ2E (ρ, β)

δβ2

∣∣∣∣
β=0

• Influences ratio of protons to neutrons in a Neutron Star

Slope Parameter, L:

L = 3ρ0
δESym (ρ)

δρ

∣∣∣∣
ρ0

• Generally accepted to lay between 30 MeV and 100 MeV

• Influences how pressure changes with density (stiffness)

8 / 16



The Gogny Interaction
Symmetry Energy
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• Stiffer EOS is predicted to provide higher mass neutron stars
• Larger Symmetry Energy is predicted to yield higher proton fraction

9 / 16



The Gogny Interaction
Symmetry Energy and Slope
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• We predicted D1P and D280 would give the highest mass Neutron
Stars and highest proton fractions
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Building a Neutron Star
Proton Fraction
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• Proton fraction was calculated by equalising chemical potentials:

µN − µP − µe = 0
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Building a Neutron Star
The TOV Equations

To construct a Neutron Star from an EOS we use the Tolman
Oppenheimer Volkoff equations:

dm(r)

dr
= 4πr2

ε

c2

dp(r)

dr
=
Gε(r)m(r)

c2r2

[
1 +

p(r)

ε(r)

] [
1 +

4πr3p(r)

m(r)c2

] [
1− 2Gm(r)

c2r

]−1

ρ(r) =
ε(r)

c2

Pressure as a function of density was calculated from the Gogny EOS as

p(ρ) = ρ2(r)
δE (ρ)

δρ

• We compiled a lookup table of pressures
• The table was then used to interpolate density as a function of

pressure
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Building a Neutron Star
Maximum Masses

• D1P gives largest
maximum radius
at 2.01 Solar
Masses
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Demorest et al. (2010) measured a 1.97(4) mass neutron star!
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Conclusion and Future Work
Conclusion

• Most, if not all, Gogny EOS are too soft to produce a Neutron Star in
keeping with current observations

• Isovector properties of Gogny forces should be improved if they are
to be applied to Neutron Star matter
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Conclusion and Future Work
Future Work

• Partial wave analysis of the Gogy force is underway
• Pairing with the Gogny force will be explored
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Questions

Any Questions?
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