

University of Liverpool, United Kingdom, Jul 7-9, 2014

Some recent status and plans for symmetry energy related studies in China

Zhigang Xiao Department of Physics, Tsinghua University

Contents

1 Particle emission hierarchy and E_{sym} effect in fission events

- Introduction and Experimental Setup
- Results
- ▶ New experiment

$2 \; E_{sym}(\rho)$ at supra-saturation studies at HIRFL-CSR

- CEE project R&D progress
- **3** Summary

Using fission to study the long time effect of $E_{sym}(\rho)$

Animation by Tian Junong

- ☑ Neck part: Very neutron rich, Low Densities
- ☑ Time Scale: Between statistical emission (Q effect) and two body process (very short) •

One Step backward: Isospin effect of the particle emission

Experimental Setup

- 35 MeV/u Ar+ Au.
- Trigger: 2 fold fragments .AND. 1 LCP
 - 2 fold fragments .AND. 1 Proj.-like

TABLE I: The parameters of the 6 LCP telescopes

Tele. No.	1	2	3	4	5	6
$d \pmod{2}$	12.0	10.2	10.4	14.0	14.0	14.0
L (cm)	11.5	11.5	11.5	26.0	21.6	28.5
θ (°)	158	155	127	80	59	44
ϕ (°)	-90	90	90	-145	-139	-133
$\Delta E_1 \ (\mu \mathrm{m})$	50	50	50	50	50	50
$\Delta E_2 \ (\mu \mathrm{m})$	400	/	400	400	/	/
$E_{\rm CsI} \ (\rm mm)$	40	40	40	40	40	40

LCPs in coincidence with fission

Double angular ratio of particle yield

• Model independently, particles emitted at smaller angle are more neutron rich

• Smaller angle emitted particles experience more dynamical contribution

Three moving source analysis

• Three moving source: CN, FF and Int. Velocity

$$\frac{d^2\sigma}{d\Omega dE} = \frac{N}{2(\pi T)^{3/2}} \left(E - E_{\rm c}\right)^{1/2} \exp\left[-\left(E - E_{\rm c}\right)/T\right]$$

STEP 1: Fit large angle telescope with CN sourceSTEP 2: Apply the CN parameters to the middle angle detectorSTEP 3: Fit the middle angle spectrum

Energy spectra analysis

 $\frac{d^2\sigma}{d\Omega dE} = \frac{N}{2(\pi T)^{3/2}} \left(E - E_{\rm c}\right)^{1/2} \exp\left[-\left(E - E_{\rm c}\right)/T\right]$

Minimum $\chi 2$ analysis

→ The particles emitted in early stage are neutron rich!

IQMD calculations

1)Along the whole decay chain, the average N/Z decreases with time.

→The neutron richness of the emitted particles is enhanced at the beginning of the emission. 2)The isospin composition N/Z exhibits an obvious dependence on $E_{sym}(\rho)$ till very late stage.

3)The effect of the symmetry energy remains equally significant in the fission.

 \rightarrow Scission point can be a clock to investigate the effect of $E_{sym}(\rho)$.

For more details, please refer to R. Wang, XZG et al, PRC 89, 064613 (2014)

New experiment Performed

- Targ et
- Completed on Jun 4, 2014.
- 1. Improved PID by using H.Q. telescopes
- 2. Lower energy threshold
- 3. More Detectors(> 5 positions)

Tel_6#(70⁰)

507 2

366.9

462.2 394.3

67399

275.1

530.6 275.6 356.6

Mean

Mean

RMS x

RMS

Entries

Mean >

Mean v

RMS x

h2 dE2

Mean

Mean y

RMS x RMS

3000

119945

582.6

774.3 447.4 460

Esym(ρ) at supra-saturation studies at HIRFL-CSR

Pre-CEE collaboration

6/??/2013 15:56:00

Central Field0.5 THom. Region~1 m×0.9 m×1.2 m³Uniformity1%Total Size~2.5×3×4 m³Total Weight~200 Ton

Prototype of a superconductive magnet (Made in IMP, for FAIR)

า เอเน_บเอ

TPC: Conceptual Design

	Read out area	~1.1 m× 0.9 m	
B, E	Pad. number	~10000	
	Pad size	~9 mm × 1.1 mm	
TPC:	Max. drift leng.	~ 50 cm	
B//E	Working gas	90% Ar + 10% CH ₄	
Particle bending due to B Ionized electrons drift due to E Collect signal when e arrive	E Field	150V/cm	
	dE/dx range	Z<=6, π,p,d,t,He-C	
	Double track res.	2.5 cm	
	Max. Multi.	200	
Post (Readout Electron	ics)(Readout Pad	Plane) (Wires)	
Cathode Place		(Beam Window	
	B, E TPC: B//E Particle bending due to B Ionized electrons drift due to E Collect signal when e arrive (Readout Electron Collect for the second Collect for the second	B, E Pad. number Pad size Pad size Max. drift leng. Working gas E Field dE/dx range Double track res. Max. Multi. (Readout Electronics) (Readout Pade (Side Panels)	

TOF (time of flight): Conceptual Design

MRPC:

→Very high V over gaps between glasses in stack;

→ Ionization and avalanche occurs

→Collect the induced signal from pad

T0+TOF	
Time resolution	<80 ps
Occupancy	<10%
Total Area	12m ²
# channels	3000

PID for TPC+iTOF

Forward MWDC conceptual design

Coverage and PID with MWDC+eTOF

Silicon Pixel conceptual design

R&D the Si pixel detector

- 2) Spatial Resolution < 0.5mm!
- 3) Further test at IMP planned in Sept. 2014

R&D of MWDC array

Conventional electronics

FLADC for timing measurement

Spatial Timing Relation Calibration

 $oldsymbol{\circ}$

2 Correct the STR till the residue distribution is optimized.

MWDC array performance

Yi Han,XZG et al, Chin. Phys. C, to be published. 100cm*100cm MWDC array constructed. 40cm *40cm MWDC array in construction. Day one beam test, ~May 2015.

Manufactory of large MWDC

Wiring: Frame=1.6m×1.6m。

Soldering Wire and Frame

Leak rate Test

Wire Frame/Tension Preset

A Large MWDC to be completed

Installed for Beam Test

R&D-MRPC

nature

April, 2011

"Observation of the Antimatter Helium-4 Nucleus"

by STAR Collaboration

Nature, 473, 353(2011).

Momentum		500MeV	600MeV	800MeV			
Pion sample	#1	56	47	45			
	#2	51	48	40			
	#3	46	48	45			
Proton sample	#1	29	32	36			
	#2	28	30	35			
	#3	31	31	35			

Production and QC of large MRPC by THU

→ In 35 MeV/u 40 Ar+ 197 Au collisions:

1 LCPs are measured in coincidence with fission events. Smaller angle products, with more contribution from dynamic emissions, are more neutron rich. A hierarchy from p to d and t are observed for the dynamic emissions, later emissions exhibit the inverse trend.

2 Effect of $E_{sym}(\rho)$ persists to very late stage. The time dependent N/Z of the light charged particles can be used as a new probe to $E_{sym}(\rho)$. A new experimental data are in analysis.

→ For $E_{sym}(\rho)$ at $\rho > \rho_0$:

3 Symmetry energy as a function of density is of importance. The density dependence of E_{sym} at $\rho > \rho_0$ is still under debate. Some future experiments have been proposed, with some being under construction. Among all the efforts, the external target experiment at HIRFL-CSR (CEE) is in progress and we hope to make real contributions.

Acknowledgement:

Funding: 1. NSFC, 2. Tsinghua University Initiative Scientific Research Program.

Thank You for your attention!

