Introduction 00

YM14

Nu

PV Asymmetry

Jefferson Lab

Future Plans

Introduction

Pion Photoporduction

▲ 同 ▶ ▲ ヨ ▶ ▲ ヨ ▶

Conclusion

Neutron Distribution in Heavy Nuclei: The PREX experiment

 \mathbf{e}

Lorenzo Zana The University of Edinburgh

for the PREX Collaboration July 8, 2014

Nucleon Radius and Neutron skin

Nucleon Radius comparison

• A qualitative feature of fundamental importance of nuclear structure in heavy atoms is that the radius of neutron is assumed to be 0.25 fm more than proton radius, this is known as neutron skin.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Neutron skin is never measured cleanly in stable nucleus.

Nucleon Radius and Neutron skin

· Our knowledge of the shape of stable nuclei is presently incomplete

(日)、

Horowitz et al. PRC63 025501 (2001) Piekarewicz et al. NPA 778 (2006)

Introduction 0	PV Asymmetry	Future Plans 000000	Introduction	Pion Photoporduction	Conclusion
Nucleon	Radii in hea	avy nuclei			

- Measurements are important to understanding the strong nuclear force
- Calculations are difficult due to non-pQCD regime complicated by many-body physics
- Interesting for:
 - Fundamental nuclear structure
 - Isospin dependence and nuclear symmetry
 - Dense nuclear matter and NEUTRON STARS
- Proton radius is relatively easy electromagnetic probes
- Neutron radius is difficult
 - Weakly couples to electroweak probes
 - Hadronic probes have considerable uncertainty
 - Theory has range of $R_n R_p$ for Pb of 0.0 0.4 fm

Introduction 00 PV Asymmetry

Future Plans

ntroduction

Pion Photoporduction

Conclusion

PV Asymmetry. The PREX COLLABORATION:

Published in Phys.Rev.Lett. 108 (2012) 112502

Measurement of the Neutron Radius of 208Pb Through Parity-Violation in Electron Scattering

S. Abrahamyan, Z. Ahmed, H. Albataineh, K. Aniol, D. S. Armstrong, W. Armstrong, T. Averett, B. Babineau, A. Barbieri, V. Bellini, R. Berniniwattha, J. Benesch, F. Benmokhtar, T. Bielarski, W. Boeglin, A. Camsonne, M. Canan, P. Carter, G. D. Cates, C. Chen, J.-P. Chen, O. Hen, F. Cusanno, M. M. Dalton, R. De Leo, K. de Jager, W. Deconinck, P. Decowski, X. Deng, A. Deur, D. Dutta, A. Etile, D. Flay, G. B. Franklin, M. Friend, S. Frullani, E. Fuchey, F. Garibaldi, E. Gasser, R. Gilman, A. Giusa, A. Glamazdin, J. Gomez, J. Grames, C. Gu, O. Hansen, J. Hansknecht, D. W. Higinbotham, R. S. Holmes, T. Holmstrom, C. J. Horowitz, J. Hoskins, J. Huang, C. E. Hyde, F. Itard, C.-M. Jen, F. Jensen, G. Jin, S. Johnston, A. Kelleher, K. Kliakhandler, P.M. King, S. Kowalski, K. S. Kumar, J. Leacock, J. Leckey IV, J. H. Lee, J. J. LeRose, R. Lindgren, N. Liyanage, N. Lubinsky, J. Mammei, F. Mammoliti, D.J. Margaziotis, P. Markowitz, A. McCreary, D. McNulty, L. Mercado, Z.-E. Meziani, R. W. Michaels, M. Mihovilovic, N. Muangma, C. Muñoz-Camacho, S. Nanda, V. Nelyubin, N. Nuruzzaman, Y. Oh, A. Palmer, D. Parno, K. D. Paschke, S. K. Phillips, B. Poelker, R. Pomatsalyuk, M. Posik, A.J.R. Puckett, B. Quinn, A. Rakhman, P. E. Reimer, S. Riordan, P. Rogan, G. Ron, G. Russo, K. Saenboornuang, A. Saha, B. Sawatzky, A. Shahinyan, R. Silwal, S. Sirca, K. Silfer, P. Solvignon, P. A. Souder, M. L. Sperduto, R. Subedi, R. Suleiman, V. Sulkoksy, C. M. Sutera, W. A. Tobias, W. Troth, G. M. Urciuoli, B. Waidyawasa, D. Wang, J. Wexler, R. Wilson, B. Wojtsekhowski, X. Yan, H. Yao, Y. Ye, Z. Ye, V. Yim, L. Zana, X. Zhan, J. Zhang, Y. Zhang, X. Zhang, P. Zhu (collapse list)

Introduction 00 PV Asymmetry

Future Plans

Introduction

ction Pie

Pion Photoporduction

Conclusion

Why parity violating asymmetry?

Z⁰ of weak interaction : sees the neutrons

	proton	neutron
Electric charge	1	0
Weak charge	0.08	1

T.W. Donnelly, J. Dubach, I. Sick Nucl. Phys. A 503, 589, 1989

C. J. Horowitz, S. J. Pollock, P. A. Souder, R. Michaels Phys. Rev. C 63, 025501, 2001

²⁰⁸Pb

Introduction 00	PV Asymmetry	Future Plans 000000	Introduction	Pion Photoporduction	Conclusion
Parity v	iolating asv	mmetry			

Weak Neutral Current (WNC) Interactions at Q² << M_Z²

Longitudinally Polarized
Electron Scattering off
Unpolarized Fixed
Targets

$$\sigma \alpha | A_{\gamma} + A_{weak}|$$

 $A_{LR} = A_{PV} = \frac{\sigma_{\downarrow} - \sigma_{\downarrow}}{\sigma_{\downarrow} + \sigma_{\downarrow}} \sim \frac{A_{weak}}{A_{\gamma}} \sim \frac{G_F Q^2}{4 \pi \alpha} (g_A^e g_V^T + \beta g_V^e g_A^T)$

•The couplings **g** depend on electroweak physics as well as on the weak vector and axial-vector hadronic current •With specific choice of kinematics and targets, one can probe new physics at high energy scales

•With other choices, one can probe novel aspects of hadron structure

Introduction 00 PV Asymmetry

Future Plans

ntroduction

Pion Photoporduction

Conclusion

Thomas Jefferson National Accelerator Facility

- Two RF superconducting linacs:
 - $E_e = 1 6 GeV$
- High quality polarized beam, $P_e = 85 90\%$

(日)、

Introduction 00	PV Asymmetry	Future Plans 000000	Introduction	Pion Photoporduction	Conclusion
PREX in	Hall-A				

Introduction 00	PV Asymmetry	Future Plans 000000	Introduction	Pion Photoporduction	Conclusion
PREX ke	ey equipme	nts			

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Several pieces of instrumentation were important

- Upgrades in polarimetry
 - Non-invasive Compton, $\sim 1\%$
 - $\bullet\,$ Invasive Moller, $\sim 1\%$
- Pb/D targets
- Quartz Cerenkov detectors
- Integrating ADCs
- Beamline monitoring components

PV Asymmetry Future Plans Pion Photoporduction 000000000000

Lead/Diamond target(s)

- 0.15 mm thick diamond, 0.5 mm thick Pb
- Cryogenically cooled frame (30 W)
- Beam is rastered by two fast magnets upstream to diffuse beam on surface

Introduction 00	PV Asymmetry	Future Plans 000000	Introduction	Pion Photoporduction	Conclusion
Experime	ental Issues				

- Several issues prevented full experimental program
 - Large amounts of radiation were dumped in the experimental hall damaging electronics
 - Mistune of septum field loss of some small angle statistics
 - Destruction of scattering chamber rubber O-rings

Introduction 00	PV Asymmetry	Future Plans 000000	Introduction	Pion Photoporduction	Conclusion
Experime	ental Issues	- Target			

- Targets were destroyed over periods of time by beam
- $\bullet\,$ Loss of material $\sim\,10\%$
- Thicker diamond targets were more successful -Lasted 4 days at 70 μA
- Thickest diamond contributes 8% background manageable

(日)、

э

Introduction 00	PV Asymmetry	Future Plans 000000	Introduction	Pion Photoporduction	Conclusion
Data Qu	ality				

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Measured asymmetries relatively stable over run

Introduction 00	PV Asymmetry	Future Plans 000000	Introduction	Pion Photoporduction	Conclusion
Results					

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

• $R_n - R_p = 0.34 + 0.15 - 0.17$ fm

Introduction 00	PV Asymm	ooo●	Future Plans	Introduction	Pion Photoporduction	Conclusion
Results						
$A_{\rm I}$	$_{\rm PV}$ =	0.6571	\pm 0.0604	± 0	0.0130 ppm	
			\pm 9.22% ((stat) ± 1	1.98% (sys)	
				abs (ppm) rel (%)	
		Polariz	ation	0.0071	1.1	
		Detect	or Lin.	0.0071	1.1	
		Beam	Corrections	0.0072	1.1	
		Q^2		0.0028	0.4	
		^{12}CAs	symmetry	0.0025	0.4	
		Transv	erse Pol.	0.0012	0.2	
		BCM I	_in.	0.0010	0.1	
		Target	Thick	0.0006	0.1	
		Rescat	tering	0.0001	0.0	
		Inelast	ic Cont.	0.0000	0.0	
	C		00/	11		

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

- Systematic of ~ 2% achieved!
- Completely statistics dominated

Introduction 00	PV Asymmetry 00000000000	Future Plans	Introduction	Pion Photoporduction	Conclusion
Future p	lans: PREX	XII			

- New proposal to complete measurements appoved with A-rating from PAC
- Measurement of APV to 3% (combined with PREX-I) with 35 days
- Several improvements to prior experiment:
 - Improved metal O-rings
 - Additional radiation mitigation

Future plans: PREXII - expected inpact

୶ୡୡ

 Introduction
 PV Asymmetry
 Future Plans
 Introduction
 Pion Photoporduction
 Conclusion

 Future plans:
 CREX
 48 Ca target

Theory TAC Review

...this and the complementary one in ²⁰⁸Pb are important measurements for constraining, on the one hand, inputs to nuclear DFT phenomenologies and, on the other, inputs to nuclear dynamics-the modeling of three-neutron forces-in microscopic approaches.

- Data from medium-sized nuclei can act as a bridge between light-nuclei ab initio calculations and heavy nuclei DFT
- Isovector observables are not easily accessible and typically poorly constrained
- Facilities like FRIB will study nuclei with very large neutron skins and halos, need CREX and PREX to reliably anchor those measurements

Introduction 00	PV Asymmetry	Future Plans ○○○●○○	Introduction	Pion Photoporduction	Conclusion
Euturo .	alance DDE	Y and CP	EV progra	om comporisor	

Future plans: PREX and CREX program comparison

With 30 days for PREX: 3% stat, 35 days for CREX 2% stat

PREX, E = 1.1 GeV, A = 0.6 ppb CREX, E = 2.2 GeV, A = 2 ppm

Charge Normalization	0.1%	Charge Normalization	0.1%
Beam Asymmetries	1.1%	Beam Asymmetries	0.3%
Detector Non-linearity	1.0%	Detector Non-linearity	0.3%
Transverse	0.2%	Transverse	0.1%
Polarization	1.1%	Polarization	0.8%
Inelastic Contribution	< 0.1%	Inelastic Contribution	0.2%
Effective Q^2	0.4%	Effective Q^2	0.8%
Total	2%	Total	1.2%

- Polarimetry errors could improve with planned advances for Moller and SoLID
- CREX more sensitive to Q^2 uncertainty than PREX, angular resolution demonstrated using elastic ep

What further measurements could be done?

What further measurements could be done? These are the only choices available for such a program

What further measurements could be done? These are the only choices available for such a program

Reasons:

- Require neutron excess
- Require large inelastic state separation, doubly-magic (3.8 MeV for ⁴⁸Ca)

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

• Must have very long lifetime

What further measurements could be done? These are the only choices available for such a program

Reasons:

- Require neutron excess
- Require large inelastic state separation, doubly-magic (3.8 MeV for ⁴⁸Ca)
- Must have very long lifetime

Importance of the experiments on both targets

- No other nuclei meet these criteria
- Both nuclei will provide two points over a broad mass range and provide powerful tests when done together

Introduction PV Asymmetry Future Plans Introduction

M14

Neutron Distribution in Heavy Nuclei: Coherent Pion Photoproduction

Lorenzo Zana The University of Edinburgh

Pion Photoporduction

for prof. Daniel Watts and the A2 Collaboration

July 8, 2014

7-9 July 2014

 $\sqrt{\phi}$

Introduction 00 PV Asymmetry

Future Plans

Introduction

Pion Photoporduction

イロト 不得 トイヨト イヨト

э

Conclusion

Coherent Pion Photoproduction. A2 Collaboration:

PRL 112, 242502 (2014)

PHYSICAL REVIEW LETTERS

week ending 20 JUNE 2014

Ş

Neutron Skin of ²⁰⁸Pb from Coherent Pion Photoproduction

C. M. Tarbert,¹ D. P. Watts,^{1,*} D. I. Glazier,¹ P. Aguar,² J. Ahrens,² J. R. M. Annand,³ H. J. Arends,² R. Beck,^{2,4} V. Bekrenev,⁵ B. Boillat,⁶ A. Braghieri,⁷ D. Branford,¹ W. J. Briscoe,⁸ J. Brudvik,⁹ S. Cherepnya,¹⁰ R. Codling,³ E. J. Downie,³ K. Fochl,¹ P. Grabmay,¹¹ R. Gregor,¹² E. Heid,³ D. Hornidge,¹³ O. Jahn,² V. L. Kashevarov,¹⁰ A. Knezevic,¹⁴ R. Kondratiev,¹⁵ M. Korolija,¹⁴ M. Kotulla,⁶ D. Krambrich,^{2,4} B. Krusche,⁶ M. Lang,^{2,4} V. Lisin,¹⁵ K. Livingston,³ S. Lugert,¹² I. J. D. MacGregor,³ D. M. Marliev,¹⁶ M. Martinez,² J. C. McGeorge,² D. Mckterovic,¹⁴ V. Mettag,¹² B. M. K. Nefkens,⁹ A. Nikolaev,²⁴ R. Novotny,¹² R. O. Owens,³ P. Pedroni,⁷ A. Polonski,¹⁵ S. N. Prakhov,⁹ J. W. Price,⁹ G. Rosner,³ M. Rost,² T. Rostomyan,⁷ S. Schadmand,¹² S. Schumann,²⁴ D. Sober,¹⁷ A. Starostin,⁹ I. Supek,¹⁴ A. Thomas,² M. Unverzagt,²⁴ Th. Walcher,⁵ L. Zana,¹ and F. Zehr⁶ (Crystal Ball at MAMI and A2 Collaboration)

¹SUPA, School of Physics, University of Edinburgh, Edinburgh EH9 3JZ, United Kingdom ²Institut für Kernphysik, University of Mainz, Germany ³SUPA, Department of Physics and Astronomy, University of Glasgow, Glasgow G12 800, United Kingdom ⁴Helmholtz-Institut für Strahlen- und Kernphysik, University Bonn, Germany ⁵Petersburg Nuclear Physics Institute, Gatchina, Russia ⁶Institut für Physik, University of Basel, Basel, Switzerland ⁷INFN Sezione di Pavia, Pavia, Italy ⁸Center for Nuclear Studies, The George Washington University, Washington, D.C. 20052, USA ⁹University of California at Los Angeles, Los Angeles, California 90095, USA ¹⁰Lebedev Physical Institute, Moscow, Russia ¹¹Physikalisches Institut Universität Tübingen, Tübingen, Germany ¹²II. Physikalisches Institut, University of Giessen, Germany 13 Mount Allison University, Sackville, New Brunswick E4L 1E6, Canada ¹⁴Rudjer Boskovic Institute, Zagreb, Croatia ¹⁵Institute for Nuclear Research, Moscow, Russia ¹⁶Kent State University, Kent, Ohio 44240, USA ¹⁷The Catholic University of America, Washington, D.C. 20064, USA (Received 2 February 2014; published 18 June 2014)

Introduction PV Asymmetry Future Plans In 00 0000000000 000000

Introduction

Pion Photoporduction

Conclusion

Coherent Pion Photoproduction

Reconstruct π^0 from $\pi^0 \rightarrow 2\gamma$ decay π^0 meson – produced with ~equal probability on protons *AND* neutrons.

Select reactions which leave nucleus in ground state

• Angular distribution of $\pi^0 \rightarrow PWIA$ contains the matter form factor

$d\sigma/d\Omega(PWIA) = (s/m_N^2) A^2 (q_{\pi}^*/2k_{\gamma}) F_2(E_{\gamma}^*,\theta_{\pi}^*)^2 |F_m(q)|^2 \sin^2\theta_{\pi}^*$

• π^0 final state interactions - use latest complex optical potentials tuned to π -A scattering data. Corrections modest at low pion momenta

Introduction 00 PV Asymmetry

Future Plans

Introduction

Pion Photoporduction

Conclusion

Mami: The Mainzer Microtron

PV Asymmetry

Future Plans

Pion Photoporduction 00000

Mami: The Photon Beamline

The MAMI photon beamline

Crystal Ball: 672 NaI(TI) crystals 93,3% of total solid angle Each crystal equipped with PMT

 $\sigma(\theta)=2^{\circ}...3^{\circ}$ $\sigma(\phi)=\frac{2^{\circ}...3}{\sin(\theta)}$

TAPS: Up to 510 BaF, crystals Polar acceptance: 4-20°

 $\Delta t = 0.5 \text{ ns FWHM}$ $\frac{\sigma}{E_v} = \frac{0.79\%}{\sqrt{E_v/GeV}}$ +1,8%

-

Previous (γ, π^0) measurements for ²⁰⁸*Pb* did not achieve the precision needed to study the neutron skin mainly because they used π^0 detection systems with too low an efficiency (10%) and too large a dependence on pion energy and angle. With Crystal Ball, Glasgow Photon Tagger and MAMI

イロト 不得 トイヨト イヨト

-

Introduction 00	PV Asymmetry	Future Plans Introduct	tion Pion Photoporduction Conclusion
<u> </u>	B 1 B 1		

To obtain cross sections the yield was corrected for the π^0 detection efficiency.

- This is calculated by analysing pseudo-data from a GEANT4 simulation of the detector apparatus using the same procedure as for the real data.
- The detection efficiency for the current measurement shows no sharp dependencies on pion angle and was typically around 40%.
- The yield was also corrected for the photon tagging efficiency (\sim 40%).
- The contribution of pions not originating from the ^{208}Pb target was found to be less than ${\sim}1\%$ in additional runs with the target removed and was subtracted from the yield.

Existing data and parameters

ヘロト 人間ト 人団ト 人団ト

-

1st minima in ${}^{208}Pb\left(\gamma,\pi^{0}
ight)$ for varying skin thickness

Introduction 00	PV Asymmetry	Future Plans 000000	Introduction	Pion Photoporduction ○○○○●	Conclusion
Results					

Fits in each bin

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction 00	PV Asymmetry	Future Plans 000000	Introduction	Pion Photoporduction ○○○○●	Conclusion
Results					

◆□> ◆□> ◆豆> ◆豆> □目

Results

 $\begin{array}{l} \text{Diffusenes} = 0.55^{+0.01(stat)+0.02(sys)}_{-0.01(stat)-0.03(sys)}\text{fm} \\ \text{Half-Height Radius} = 6.70^{+0.03(stat)+0.01(sys)}_{-0.03(stat)-0.01(sys)}\text{fm} \\ \text{Neutron Skin} = 0.15^{+0.03(stat)+0.01(sys)}_{-0.03(stat)-0.03(sys)}\text{fm} \\ \end{array}$

Introduction 00	PV Asymmetry	Future Plans 000000	Introduction	Pion Photoporduction	Conclusion
Results					

э ł < 17 ▶

Introduction 00	PV Asymmetry 00000000000	Future Plans 000000	Introduction	Pion Photoporduction	Conclusion
Conclus	sions				
					100

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Neutron radius densities are challenging to measure, but provide important information for nuclear structure and astrophysics

• The Neutron Skin in ${}^{208}Pb$ show a profile charachterized by an halo (diffuseness $\gg 0$)

・ロト ・四ト ・ヨト ・ヨト ・ヨ

500

Neutron radius densities are challenging to measure, but provide important information for nuclear structure and astrophysics

PV Asymmetry

- Neutron radius densities are challenging to measure, but provide important information for nuclear structure and astrophysics
- Parity-violating electron scattering provides a clean method to measure such a distribution
- The PREX and CREX measurements aim to measure δR_n to a precision of 0.06 and 0.02 with 35 and 30 production days respectively

 Introduction
 PV Asymmetry
 Future Plans
 Introduction
 Pion Photoporduction
 Conclusion

 Conclusions
 Conclusion
 <

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Neutron radius densities are challenging to measure, but provide important information for nuclear structure and astrophysics

BOTH METHODS have active future programme of measurements planned on further nuclei, skin evolution across isotopic chains

Euture Plans Pion Photoporduction Conclusion **PV** Asymmetry Conclusions Neutron radius densities are challenging to measure, but provide important information for nuclear structure and astrophysics BOTH METHODS have active future programme of measurements planned on further nuclei, skin evolution across

isotopic chains

Thank You for your time

・ロト ・雪 ト ・ ヨ ト ・ ヨ ト

-

