Constraining the nuclear matter equation of state using the elliptic flow of light clusters

by A. Le Fèvre1, Y. Leifels1, W. Reisdorf1, J. Aichelin2, Ch. Hartnack2, and N. Herrmann3

1GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany

2SUBATECH, UMR 6457, Ecole des Mines de Nantes - IN2P3/CNRS - Université de Nantes, France

3Physikalisches Institut der Universität Heidelberg, Heidelberg, Germany
Constraining the nuclear matter equation of state using the elliptic flow of light clusters

by A. Le Fèvre1, Y. Leifels1, W. Reisdorf1, J. Aichelin2, Ch. Hartnack2, and N. Herrmann3

1GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
2SUBATECH, UMR 6457, Ecole des Mines de Nantes - IN2P3/CNRS - Université de Nantes, France
3Physikalisches Institut der Universität Heidelberg, Heidelberg, Germany

- Constraining the stiffness of the EOS with the elliptic flow.
- A clusterisation approach…
- Towards the determination of the stiffness of the asymmetry energy.
- Summary and discussion.
Introduction

- The equation of state (EOS) of nuclear matter:
 - of fundamental interest
 - object of intense theoretical efforts since several decades
 - an important ingredient in modeling physical phenomena such as:
 - compact stars [1]
 - core collapse supernovae
 - The calculation of the nuclear EOS, such as very recently attempted in [3], is a very complex task.
 - Nuclear physics based on empirical observations => even the most ‘fundamental’ theory of nuclear forces requires a confrontation with empirical facts.

Introduction

- The equation of state (EOS) of nuclear matter:
 - of fundamental interest
 - object of intense theoretical efforts since several decades
 - an important ingredient in modeling fascinating astrophysical phenomena such as:
 - compact stars\(^1\)
 - core collapse supernovae\(^2\)

- The calculation of the nuclear EOS from first principles, such as very recently attempted in \(^3\), is a very complex task.

- Nuclear physics based on empirical observations => even the most 'fundamental' theory of nuclear forces requires a confrontation with empirical facts.

- 1st method, from astrophysicists: from 'neutron' star masses and radii. But missing:
 - precise model-independent radii,
 - composition of the matter in the center of the stars.

Introduction

Alternative method: in earth laboratories, heavy ion collisions over a wide range of incident energies, system sizes and compositions.

- limited to $E_{\text{beam}} < 10 \text{ A.GeV}$ ↔ some kind of a clock is available (sound velocity versus participant-spectator interaction).
Introduction

Alternative method: in earth laboratories, heavy ion collisions over a wide range of incident energies, system sizes and compositions.

Some kind of a clock is available (sound velocity versus participant-spectator interaction).
Introduction

- Alternative method: in earth laboratories, heavy ion collisions over a wide range of incident energies, system sizes and compositions.
 - limited to $E_{\text{beam}} < 10$ A.GeV \iff some kind of a clock is available (sound velocity versus participant-spectator interaction).
Introduction

Flows at high density in heavy-ion collisions

$$\frac{dN}{d(\phi - \phi_R)}(y, p_t) = \frac{N_0}{2\pi} \left(1 + 2 \sum_{n=1} v_n \cos n(\phi - \phi_R) \right)$$

\(Y = \text{rapidity} \)
\(p_t = \text{transverse momentum} \)
\(\phi_R = \text{reaction plane azimuthal angle} \)

\(V_1 = \text{‘side/directed flow’, } \langle p_x/p_t^2 \rangle \)

\(V_2(y, p_t) = \left\langle \frac{p_x^2 - p_y^2}{p_t^2} \right\rangle \)

‘Elliptic flow’: \(\cos(2(\phi-\phi_R)) \) mode, competition between ‘in-plane’ \((V_2>0)\) and ‘out-of-plane’ ejection \((V_2<0)\).
Introduction

Flows at high density in heavy-ion collisions

\[
\frac{dN}{d(\phi - \phi_R)}(y, p_t) = \frac{N_0}{2\pi} \left(1 + 2 \sum_{n=1}^{\infty} \nu_n \cos n(\phi - \phi_R) \right) \]

\(Y = \text{rapidity}\)

\(p_t = \text{transverse momentum}\)

\(\Phi_R = \text{reaction plane azimuthal angle}\)

\(V_1 = \text{‘side/directed flow’, } <p_x/p_t^2>\)

\[V_2(y, p_t) = \left(\frac{p_x^2 - p_y^2}{p_t^2} \right)\]

‘Elliptic flow’: \(\cos(2(\Phi-\Phi_R))\) mode, competition between ‘in-plane’ \((V_2>0)\) and ‘out-of-plane’ ejection \((V_2<0)\).
Introduction

- Alternative method: in earth laboratories, heavy ion collisions over a wide range of incident energies, system sizes and compositions.
 - limited to $E_{\text{beam}} < 10 \text{ A.GeV}$ ↔ some kind of a clock is available (sound velocity versus participant-spectator interaction).
Constraining the stiffness of the EOS with the elliptic flow.

- **Present work**: improve the situation in the 1 A.GeV regime, from extensive flow data published recently by the FOPI Collaboration (Au+Au @ 0.4-1.5 A.GeV) \[^4\]

- close look at the elliptic flow data with improvements:
 - 1) not only protons: d, t, \(^3\)He \(^4\)He having larger flow signals than single nucleons.
 - 2) not only mid-rapidity data: 80% of the target-projectile rapidity gap.

Constraining the stiffness of the EOS with the elliptic flow.

Elliptic flow

Au+Au 1.2A GeV 0.25<b0<0.45 protons

Constraining the stiffness of the EOS with the elliptic flow.

Complete shape of $v_2(y_0)$:
- A new observable:

 $$v_{2n} = |v_{20}| + |v_{22}|,$$

 from fit

 $$v_2(y_0) = v_{20} + v_{22} \cdot y_0$$

 $\Rightarrow v_{2n}(E_{\text{beam}})$ varies by a factor
 ≈ 1.6, \gg measured uncertainty
 (≈ 1.1)

 \Rightarrow clearly favors a 'soft' EOS.

FOPI Collaboration / NPA 876 (2012) 1-60
Constraining the stiffness of the EOS with the elliptic flow.

Complete shape of $v_2(y_0)$: a new observable:
$v_{2n} = |v_{20}| + |v_{22}|$, from fit
$v_2(y_0) = v_{20} + v_{22} \cdot y_0$

$\rightarrow v_{2n}(E_{\text{beam}})$ varies by a factor ≈ 1.6, \gg measured uncertainty (≈ 1.1)
\rightarrow clearly favors a 'soft' EOS.
Constraining the stiffness of the EOS with the elliptic flow.

- Phenomenological EOS
 HM and SM include the saturation point at $\rho/\rho_0 = 1$, $E/A = -16$ MeV by construction.
- \Rightarrow fixes the absolute position of the curves:
- the heavy ion data are only sensitive to the shape, i.e. the pressure (derivative).
- \Rightarrow a stiff EOS, characterised by $K_0 = 380$ MeV is not in agreement with the flow data in the incident energy range 0.4 - 1.5 A.GeV.
Constraining the stiffness of the EOS with the elliptic flow.

- Phenomenological EOS HM and SM include the saturation point at $\rho/\rho_0 = 1$, $E/A = -16$ MeV by construction.
- This fixes the absolute position of the curves: the heavy ion data are only sensitive to the shape, i.e. the pressure (derivative).
- A stiff EOS, characterised by $K_0 = 380$ MeV, is not in agreement with the flow data in the incident energy range 0.4 - 1.5 A.GeV.
Constraining the stiffness of the EOS with the elliptic flow.

- Phenomenological EOS HM and SM include the saturation point at $\rho/\rho_0 = 1$, $E/A = -16$ MeV by construction.
- This fixes the absolute position of the curves:
- The heavy ion data are only sensitive to the shape, i.e. the pressure (derivative).
- A stiff EOS, characterised by $K_0 = 380$ MeV, is not in agreement with the flow data in the incident energy range 0.4 - 1.5 A.GeV.
Which density has been probed?

Purpose = characterise which 'typical' densities where probed in the FOPI experiments

=> at which time V_2 develops, and which conditions influence it the most.

IQMD transport model[5,6] various phenomenological EOS's:

» 'stiff' = H & HM (+ momentum dependent), $K_0 = 380$ MeV

» 'soft' = S & SM (+momentum dependent), $K_0 = 200$ MeV.

Here: protons in Au+Au at 1.5 A.GeV, $b=3$ fm

full target-projectile overlap

Density

Number of collisions

Mean-field momentum transfer

$\Phi / \langle \Phi \rangle_{\text{c.m.}}$

$\langle \Phi \rangle / \langle \Phi \rangle_{\text{c.m.}}$

$t_{\text{scaled}} = \text{time} / \text{passing time}$

ΣN_{coll}

$\langle \Delta p_{\text{f.m.}} \rangle (\text{GeV/c})$

0.5 1 1.5 2 2.5

0 0.5 1 1.5 2 2.5

0 0.5 1 1.5 2 2.5

0 5 10

0.05 0.1 0.15
Which density has been probed?

- The elliptic flow in his final dependence with rapidity develops fast: during the passing time.

- The elliptic flow in strength and shape is mostly influenced by the force of the mean field.

- The 'typical' density of the 'measured' EOS can be built from the mean value weighted by this force up to the passing time.
Simulations: the scenario

- The density range, relevant to the EOS evidenced by the FOPI Collaboration, spans in the range \(\rho = (1.25 - 2.0) \rho_0 \).
SACA: a clusterisation approach…

2 steps:

1) Pre-select good «candidates» for fragments according to proximity criteria: real space coalescence = Minimum Spanning Tree (MST) procedure.

\[E = E_{\text{kin}}^1 + E_{\text{kin}}^2 + V^1 + V^2 \]

- Simulated Annealing Procedure: PLB301:328,1993; later called SACA.
- 2010 version: publication in progress…
SACA: a clusterisation approach…

* Simulated Annealing Procedure: PLB301:328,1993; later called SACA.
* 2010 version: publication in progress…

2 steps:
1) Pre-select good «candidates» for fragments according to proximity criteria: real space coalescence = Minimum Spanning Tree (MST) procedure.
2) Take randomly 1 nucleon out of one fragment

\[E = E_{\text{kin}}^1 + E_{\text{kin}}^2 + V^1 + V^2 \]
SACA: a clusterisation approach...

* Simulated Annealing Procedure: PLB301:328,1993; later called SACA.
* 2010 version: publication in progress...

2 steps:

1) Pre-select good «candidates» for fragments according to proximity criteria: real space coalescence = Minimum Spanning Tree (MST) procedure.
2) Take randomly 1 nucleon out of one fragment
3) Add it randomly to another fragment

$$E = E_{\text{kin}}^1 + E_{\text{kin}}^2 + V^1 + V^2$$

$$E' = E_{\text{kin}}'^1 + E_{\text{kin}}'^2 + V'^1 + V'^2$$
SACA: a clusterisation approach...

2 steps:

1) Pre-select good «candidates» for fragments according to proximity criteria: real space coalescence = Minimum Spanning Tree (MST) procedure.

2) Take randomly 1 nucleon out of one fragment

3) Add it randomly to another fragment

If $E' < E$ take the new configuration

\[E = E_{\text{kin}}^1 + E_{\text{kin}}^2 + V^1 + V^2 \]

\[E' = E_{\text{kin}}^{1'} + E_{\text{kin}}^{2'} + V^{1'} + V^{2'} \]

* Simulated Annealing Procedure: PLB301:328, 1993; later called SACA.

* 2010 version: publication in progress…
SACA: a clusterisation approach…

2 steps:

1) Pre-select good «candidates» for fragments according to proximity criteria: real space coalescence = Minimum Spanning Tree (MST) procedure.

2) Take randomly 1 nucleon out of one fragment

3) Add it randomly to another fragment

\[E = E_{\text{kin}}^1 + E_{\text{kin}}^2 + V^1 + V^2 \]

\[E' = E_{\text{kin}}'^1 + E_{\text{kin}}'^2 + V'^1 + V'^2 \]

If \(E' < E \) take the new configuration

If \(E' > E \) take the old with a probability depending on \(E' - E \)
SACA: a clusterisation approach...

* Simulated Annealing Procedure: PLB301:328,1993; later called SACA.
* 2010 version: publication in progress…

2 steps:

1) Pre-select good «candidates» for fragments according to proximity criteria: real space coalescence = Minimum Spanning Tree (MST) procedure.

2) Take randomly 1 nucleon out of one fragment

3) Add it randomly to another fragment

\[E = E_{\text{kin}}^1 + E_{\text{kin}}^2 + V^1 + V^2 \]

\[E' = E_{\text{kin}}^1' + E_{\text{kin}}^2' + V^1' + V^2' \]

If \(E' < E \) take the new configuration
If \(E' > E \) take the old with a probability depending on \(E' - E \)

Repeat this procedure very many times…
SACA: a clusterisation approach…

* Simulated Annealing Procedure: PLB301:328,1993; later called SACA.
* 2010 version: publication in progress…

2 steps:
1) Pre-select good «candidates» for fragments according to proximity criteria: real space coalescence = Minimum Spanning Tree (MST) procedure.
2) Take randomly 1 nucleon out of one fragment
3) Add it randomly to another fragment

\[E = E_{1\text{kin}} + E_{2\text{kin}} + V_1 + V_2 \]
\[E' = E'_{1\text{kin}} + E'_{2\text{kin}} + V'_1 + V'_2 \]

If \(E' < E \) take the new configuration
If \(E' > E \) take the old with a probability depending on \(E' - E \)
Repeat this procedure very many times...
It leads automatically to the most bound configuration.
SACA: a clusterisation approach...

Ingredients of the binding energy of the clusters:

① **Volume** component: mean field (Skyrme, dominant), for NN, NΛ (hypernuclei)

② **Surface effect** correction: Yukawa term.

③ **Asymmetry energy**: $23.3 \text{ MeV}.(\langle \rho_B' \rangle \gamma_{\text{ASY}}^{-1}).(\langle \rho_n' \rangle - \langle \rho_p' \rangle)^2/\langle \rho_B' \rangle$

④ **Extra « structure » energy** $(N,Z,\rho) = B_{\text{MF}}(\rho).(B_{\text{exp}} - B_{\text{BW}})/(B_{\text{BW}} - B_{\text{Coul}} - B_{\text{asy}}))(\rho_0)$

⑤ $^3\text{He}+n$ recombination.

⑥ **Secondary decay**: GEMINI.
SACA: a clusterisation approach...

Ingredients of the binding energy of the clusters:

1. **Volume** component: mean field (Skyrme, dominant), for NN, NΛ (hypernuclei)
2. **Surface effect** correction: Yukawa term.
3. **Asymmetry energy**: 23.3 MeV.$(\langle \rho_B' \rangle)(\gamma_{ASY}^{-1})(\langle \rho_n' \rangle - \langle \rho_p' \rangle)^2/\langle \rho_B' \rangle$
4. **Extra « structure » energy** $(N,Z,\rho) = B_{MF}(\rho).((B_{exp} - B_{BW})/(B_{BW} - B_{Coul} - B_{asy}))(\rho_0)$
5. $^3\text{He} + n$ recombination.
6. **Secondary decay**: GEMINI.

Remarks:

- Advantage of **SACA** : the fragment partitions can reflect the early dynamical conditions (Coulomb, density, flow details, strangeness...). Fragment partitions already determined at the passing time of the colliding system.
- In the framework of QMD, HSD, $\langle \rho_{clusters} \rangle < 0.5$. $\rho_0 \Rightarrow$ isotope yields of **SACA** with E_{asy} probe it at sub-saturation densities.
SACA: a clusterisation approach...

IQMD-SACA central Xe+Sn @ 100 A.MeV
SACA: a clusterisation approach...

FOPI

IQMD-SACA central Xe+Sn @ 100 A.MeV

Another application of SACA: hypernuclei production

\[\text{IQMD+SACA} \]
\[{}^{58}\text{Ni} + {}^{58}\text{Ni} \]
\[\text{at} \]
\[1.91 \text{ AGeV} \]
\[(b < 6 \text{ fm}) - t_{\text{cluster}} = 20 \text{ fm/c} \]

Soft EOS
with m.d.i.
with Kaon pot.

\[{}^{4}\text{He} \]
\[{}^{3}\text{He} \]
\[{}^{4}\text{H} \]
\[{}^{6}\text{He} \]
\[n-\Lambda \]
\[p-\Lambda \]

\[{}^{3}\text{H} \]
\[{}^{4}\text{He} \]
\[{}^{5}\text{He} \]
\[{}^{6}\text{He} \]
Towards the determination of the stiffness of the asymmetry energy.

Directed flow

\(\gamma_{\text{asy}} = 1 \)

FOPI Collaboration / NPA 876 (2012) 1-60
Towards the determination of the stiffness of the asymmetry energy.

Directed flow

\[\gamma_{\text{asy}} = 0.5 \]

\[\text{FOPI Collaboration / NPA 876 (2012) 1-60} \]
Towards the determination of the stiffness of the asymmetry energy.

Directed flow

\[\gamma_{\text{asy}} = 1.5 \]

FOPI Collaboration / NPA 876 (2012) 1-60
Towards the determination of the stiffness of the asymmetry energy.

Elliptic flow

\[\gamma_{asy} = 1 \]
Towards the determination of the stiffness of the asymmetry energy.

Elliptic flow

The differences in $t^3\text{He}$ elliptic flow increases with energy $\gamma_{\text{asy}} = 1$

FOPI Collaboration / NPA 876 (2012) 1-60
Towards the determination of the stiffness of the asymmetry energy.

PRELIMINARY
Towards the determination of the stiffness of the asymmetry energy.

at mid-rapidity

The higher the bombarding energy, the stronger the sensitivity.
Summary and discussion
A single parameter v_{2n}, characterising the elliptic flow over a large rapidity interval, for protons and other light isotopes -> clear discrimination for soft EOS.
Summary and discussion

- A single parameter v_{2n}, characterising the elliptic flow over a large rapidity interval, for protons and other light isotopes -> clear discrimination for soft EOS.
- Relevant density range: estimated from the simulations to span $\rho = (1.25 - 2.0)\rho_0$.
A single parameter v_{2n}, characterising the elliptic flow over a large rapidity interval, for protons and other light isotopes → clear discrimination for soft EOS.

Relevant density range: estimated from the simulations to span $\rho = (1.25 - 2.0)\rho_0$.

The spectator clock can presumably be used to try to extend improved EOS constraints to densities $(3-4\,\rho_0)$ in future accelerator systems such as FAIR.
Summary and discussion

- A single parameter v_{2n}, characterising the elliptic flow over a large rapidity interval, for protons and other light isotopes -> clear discrimination for soft EOS.
- Relevant density range: estimated from the simulations to span $\rho = (1.25 - 2.0)\rho_0$.
- The spectator clock can presumably be used to try to extend improved EOS constraints to densities $(3-4 \rho_0)$ in future accelerator systems such as FAIR.
- Beyond 4 A.GeV, other ideas are needed to extract EOS information from heavy ion data.
Summary and discussion

- A single parameter v_{2n}, characterising the elliptic flow over a large rapidity interval, for protons and other light isotopes -> clear discrimination for soft EOS.
- Relevant density range: estimated from the simulations to span $\rho = (1.25 - 2.0)\rho_0$.
- The spectator clock can presumably be used to try to extend improved EOS constraints to densities $(3 - 4 \rho_0)$ in future accelerator systems such as FAIR.
- Beyond 4 A.GeV, other ideas are needed to extract EOS information from heavy ion data.
- A realistic treatment of the clusterisation is needed to account for e.g. $E_{\text{asymmetry}}$ effects.
Summary and discussion

- A single parameter v_{2n}, characterising the elliptic flow over a large rapidity interval, for protons and other light isotopes -> clear discrimination for soft EOS.
- Relevant density range: estimated from the simulations to span $\rho = (1.25 - 2.0)\rho_0$.
- The spectator clock can presumably be used to try to extend improved EOS constraints to densities $(3-4 \rho_0)$ in future accelerator systems such as FAIR.
- Beyond 4 A.GeV, other ideas are needed to extract EOS information from heavy ion data.
- A realistic treatment of the clusterisation is needed to account for e.g. $E_{\text{asymmetry}}$ effects.
- The stiffness of the asymmetry energy can be discriminated by the shape (v_{2n}) the elliptic flow over a large range of rapidity (not only mid-rapidity) of ^3He and tritons. -> Preliminary indication of $0.5 \leq \gamma_{\text{asy}} < 1$ by confronting IQMD-SACA to FOPI data.
Summary and discussion

- A single parameter v_{2n}, characterising the elliptic flow over a large rapidity interval, for protons and other light isotopes -> clear discrimination for soft EOS.
- Relevant density range: estimated from the simulations to span $\rho = (1.25 - 2.0)\rho_0$.
- The spectator clock can presumably be used to try to extend improved EOS constraints to densities $(3-4\rho_0)$ in future accelerator systems such as FAIR.
- Beyond 4 A.GeV, other ideas are needed to extract EOS information from heavy ion data.
- A realistic treatment of the clusterisation is needed to account for e.g. $E_{\text{asymmetry}}$ effects.
- The stiffness of the asymmetry energy can be discriminated by the shape (v_{2n}) the elliptic flow over a large range of rapidity (not only mid-rapidity) of ^3He and tritons. -> Preliminary indication of $0.5 \leq \gamma_{\text{asy}} < 1$ by confronting IQMD-SACA to FOPI data.
- The same can be obtained via the ratio of the elliptic flow values of neutrons and protons.
Summary and discussion

- A single parameter v_{2n}, characterising the elliptic flow over a large rapidity interval, for protons and other light isotopes -> clear discrimination for soft EOS.

- Relevant density range: estimated from the simulations to span $\rho = (1.25 - 2.0)\rho_0$.

- The spectator clock can presumably be used to try to extend improved EOS constraints to densities $(3-4\rho_0)$ in future accelerator systems such as FAIR.

- Beyond 4 A.GeV, other ideas are needed to extract EOS information from heavy ion data.

- A realistic treatment of the clusterisation is needed to account for e.g. $E_{\text{asymmetry}}$ effects.

- The stiffness of the asymmetry energy can be discriminated by the shape (v_{2n}) the elliptic flow over a large range of rapidity (not only mid-rapidity) of 3He and tritons. -> Preliminary indication of $0.5 \leq \gamma_{\text{asy}} \leq 1$ by confronting IQMD-SACA to FOPI data.

- The same can be obtained via the ratio of the elliptic flow values of neutrons and protons.

See AsyEOS experiment: ongoing analysis, forthcoming talks by P. Russotto and J. Brzychczyk.
Comparison to microscopic calculations

(three representative microscopic calculations compared with our new constraints)

Katayama 2013

--- Au

Dirac-Brueckner-Hatree-Fock (DBHF) calculation[10] using the Bonn A[11] nucleon-nucleon potential

\begin{figure}
\centering
\includegraphics[width=\textwidth]{figure.png}
\end{figure}

Comparison to microscopic calculations
(three representative microscopic calculations compared with our new constraints)

![Graph indicating comparison to microscopic calculations](image)

2 symmetric nuclear matter EOS’s from [12]:

1) ‘DBHF’ = meson theoretic potential together with the DBHF method
2) ‘Chiral’ = use of effective field theory (EFT) with density dependent interactions derived from leading order chiral three-nucleon forces.

Comparison to microscopic calculations
(three representative microscopic calculations compared with our new constraints)

Using the chiral approach\cite{13}: 2 rather different EOS’s including or not virtual \(\Delta\) excitations.

- the virtual \(\Delta\)-excitations help locate the EOS at the right horizontal place around \(\rho = 0.16\) fm\(^{-3}\).
- the \(\Delta\) leads to a rather marked stiffening of the EOS (\(K_0 = 304\) MeV)
- because ‘cold’ EOS?
- finite temperature in the reaction \(\Rightarrow\) the \(\Delta\) are real rather than virtual.

The theoretical ‘\(\Delta\) stiffness’ could then be a dispersion effect rapidly changing with temperature.

Beam energy dependence of elliptic flow

- Pressure gradient of compression zone
- Shadowing of spectators
- At low energies
 - Attraction due to mean field of nucleons
- At high energies
 - Lacking shadowing of spectators
Elliptic flow and the nuclear matter EOS

P. Danielewicz et al.
Elliptic flow and the nuclear matter EOS

P. Danielewicz et al.