Study the QCD Phase Structure at the High Baryon Density

Nu Xu^(1,2)

Outline:

- 1) Introduction
- 2) Selected results from RHIC BES-I
- 3) Selected day-I observables for CBM

⁽¹⁾ College of Physical Science & Technology, Central China Normal University, China
 ⁽²⁾ Nuclear Science Division, Lawrence Berkeley National Laboratory, USA

Exploring QCD Phase Structure

QCD Thermodynamics

Baryon Density Peaks at ~ $\sqrt{s_{NN}}$ = 8 GeV

The CBM Experiment

Bulk Properties at Freeze-out

- RHIC ($20 \le \mu_B \le 420$ MeV): small temperature variation

- CBM (400 $\leq \mu_B \leq$ 750 MeV): temperature changes dramatically!

Collectivity v_2 Measurements

- Number of constituent quark (NCQ) scaling in v₂ => partonic collectivity => deconfinement in high-energy nuclear collisions
- 2) At $\sqrt{s_{NN}}$ < 11.5 GeV, the universal v₂ NCQ scaling is broken, consistent with hadronic interactions becoming dominant.

BES v₂ and Model Comparison

Baryonic Chemical Potential μ_B (MeV)

(a) Hydro + Transport: consistent with baryon data.

[J. Steinheimer, V. Koch, and M. Bleicher PRC86, 44902(13).]

(b) NJL model: Hadron splitting consistent. Sensitive to vector-coupling, **CME**, **net-baryon density dependent.** [J. Xu, et al., arXiv:1308.1753/PRL112.012301]

Chiral Effects

Chiral Vortical Effect

 Λ -proton correlation measurement:

- The opposite baryon number (Λpbar or Λbar-p) correlations (OB) are similar
- The same baryon number (Λ-p or Λbar-pbar) correlations (SB) are lower than that of the OB, *as expected from the CVE.*
 - D. Kharzeev, D.T. Son, PRL106, 062301(11)
 - D. Kharzeev. PLB633, 260 (06)
 - D. Kharzeev, et al. NPA803, 227(08)

Charge Separation wrt Event Plane

LPV(CME) disappears: with neutral hadrons:

LPV(CME) disappears at low energy: →hadronic interactions become dominant at $\sqrt{s_{NN}} \le 11.5$ GeV

STAR: PRL. 103, 251601(09) D. Kharzeev. PLB633, 260 (06) D. Kharzeev, et al. NPA803, 227(08)

Higher Moments

- Higher moments of conserved quantum numbers:
 Q, S, B, in high-energy nuclear collisions
- 2) Sensitive to critical point (ξ correlation length):

$$\left\langle \left(\delta N \right)^2 \right\rangle \approx \xi^2, \ \left\langle \left(\delta N \right)^3 \right\rangle \approx \xi^{4.5}, \ \left\langle \left(\delta N \right)^4 \right\rangle \approx \xi^7$$

3) Direct comparison with calculations at any order:

$$S\sigma \approx \frac{\chi_B^3}{\chi_B^2}, \qquad \kappa\sigma^2 \approx \frac{\chi_B^4}{\chi_B^2}$$

 Extract susceptibilities and freeze-out temperature. An independent/important test of thermal equilibrium in heavy ion collisions.

References:

- STAR: PRL105, 22303(10); ibid, 032302(14)
- M. Stephanov: *PRL*102, 032301(09) // R.V. Gavai and S. Gupta, *PLB*696, 459(11) // F. Karsch et al, *PLB*695, 136(11) // S.Ejiri et al, PLB633, 275(06)
- A. Bazavov et al., PRL109, 192302(12) // S. Borsanyi et al., PRL111, 062005(13) // V. Skokov et al., PRC88, 034901(13)

Higher Moments Results

Net-proton results:

- 1) All data show deviations below Poisson for $\kappa\sigma^2$ at all energies. Larger deviation at $\sqrt{s_{NN}}$ ~20GeV
- 2) UrQMD model shows monotonic behavior in the moment products STAR: **PRL112**, 32302(14)/arXiv: 1309.5681

Net-charge results:

- 1) No non-monotonic behavior
- 2) More affected by the resonance decays

STAR: arXiv: 1402.1558 P. Garg et al, PLB726, 691(13)

BESII is needed:

Higher statistics needed for collisions at $\sqrt{s_{NN}} < 20 \ GeV$

Comparing to LGT calculations $T_f = 146 \pm 6 \text{ MeV}$, $\sqrt{s_{NN}} > 39 \text{ GeV}$

Energy Dependence of Di-electrons

Bulk-penetrating probe:

- M_{ee} ≤ 1GeV/c²: In-medium broadened ρ, model results* are consistent with exp. data. At 200GeV, the enhancement is in the order of 1.77±0.11 ±0.24±0.33 within 0.3<M_{ee}<0.7GeV/c²) (* driven by the baryon density in the medium)
- 2) 1≤M_{ee} ≤ 3GeV/c²: Thermal radiation: exp(-M_{ee}/T)?
 HFT: Charm contributions.
- 3) High statistics data are needed, **BESII!**
- STAR: (200GeV data) sub. to PRL. 1312.7397
- R. Rapp: PoS CPOD13, 008(2013)
- O. Linnyk et al, PRC85, 024910(12)

- > Hadron spectra and anisotropies: π , K, p, Φ , Λ , Ξ , Ω
 - Freeze-out property
 - Phase boundary
- > Baryon/strangeness correlations: κ (net-Q, net-p, net-s)
 - Critical point, phase boundary
 - Global Chiral effect
- > Dilepton spectra $m_{\parallel}(b, p_T, A)$
 - Chiral property, quarkyonic matter
- ➤ Exotics, …

Nu Xu

24th CBM Collaboration Meeting, Krakow, Poland, September 8 – 12, 2014

15/17

Exploring QCD Phase Structure

