# Status of $\overline{p}p \rightarrow h_c \rightarrow \eta_c + \gamma$ analysis

## D. Melnychuk, NCBJ Warsaw

11.06.2014

D. Melnychuk, NCBJ Warsaw h<sub>c</sub> analysis status

◆□ > ◆□ > ◆臣 > ◆臣 > ─臣 ─のへで

# Reaction for study



## Advantages of decay mode

- Narrow φ resonance (Γ = 4 MeV) in the final state allows tight constraint on its invariant mass.
- Relatively low background due to the fact that K<sup>+</sup>K<sup>-</sup>K<sup>+</sup>K<sup>-</sup> final state have 4 s quarks.

$$p\overline{p} \rightarrow h_c \rightarrow \eta_c + \gamma \rightarrow \phi \phi \gamma \rightarrow K^+ K^- K^+ K^- \gamma$$

### Decay mode of $\eta_c$

$$\eta_{c} \rightarrow \phi \phi, \ BR = 2.6 \cdot 10^{-3}, \ \phi \rightarrow K^{+}K^{-}, BR = 0.49$$

## Signal cross-section

E835: 
$$\Gamma_{p\overline{p}}B_{\eta_c\gamma}$$
= 12 eV  
 $\sigma_{p\overline{p}\rightarrow h_c\rightarrow \eta_c+\gamma} = 40nb$ 

ヘロト ヘアト ヘヨト ヘ

# **Reaction kinematics**



イロン イロン イヨン イヨン

æ

E835 experiment gave an upper limit on the  $h_c$  width  $\Gamma_{h_c} < 1 MeV$ . However BES3 experiment in 2012 measured  $h_c$  width  $\Gamma_{h_c} = 0.7 \pm 0.4 MeV$ Phys.Rev. D86 (2012) 092009 ( $\psi$ (3686)  $\rightarrow \pi^0 h_c$ ,  $h_c \rightarrow \gamma \eta_c$  via  $\eta_c$  exclusive decays.)

Can PANDA measure it better in a reasonable time?

ヘロト ヘアト ヘビト ヘビト

DPM event generator was used to estimate cross-section for background channels with 10<sup>7</sup> generated events for first 3 channels. For last reaction background cross-section is an extrapolation from lower energy according to total cross-section.

| Background cross-section |                                                                                |        |  |
|--------------------------|--------------------------------------------------------------------------------|--------|--|
|                          | decay mode                                                                     | σ      |  |
|                          | $ ho \overline{ ho}  ightarrow  m K^+  m K^-  m K^+  m K^- \pi^0$              | 360 nb |  |
|                          | $ ho \overline{ ho}  ightarrow  m K^+  m K^- \phi \pi^0$                       | 37 nb  |  |
|                          | $oldsymbol{ ho}\overline{oldsymbol{ ho}} ightarrow \phi\phi\pi^{oldsymbol{0}}$ | <6 nb  |  |
|                          | $ ho \overline{ ho}  ightarrow  m K^+  m K^- \pi^+ \pi^- \pi^0$                | 30 µb  |  |

ヘロン 人間 とくほ とくほ とう

3

Analised events:

- 20 k  $p\overline{p} \rightarrow h_c \rightarrow \phi \phi \gamma$  (Full simulation)
- 20 k pp
  → h<sub>c</sub> → φφγ (Fast simulation: full detector, NoMvdGem, NoFwdSpec, NoEmcBarrel)
- 1 M pp
  → K<sup>+</sup>K<sup>-</sup>K<sup>+</sup>K<sup>-</sup>π<sup>0</sup> (full detector, NoMvdGem, NoFwdSpec, NoEmcBarrel)
- 1 M  $p\overline{p} \rightarrow K^+K^-\phi\pi^0$
- 1 M  $p\overline{p} \rightarrow \phi \phi \pi^0$
- 20 M  $p\overline{p} \rightarrow K^+K^-K^+K^-\pi^0$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Selection:

- 4C-fit to beam energy and momentum, CL> 0.05
- $\eta_c$  mass selection [2.9:3.06] GeV
- *m*(φ) within [0.99;1.05] GeV
- no  $\pi^0$  candidates in event (no  $\gamma\gamma$  invariant mass in the range 135  $\pm$  20 *MeV*)

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

## Hadronic split-off



(y,y) mass

<ロト <回 > < 注 > < 注 > 、

æ

#### D. Melnychuk, NCBJ Warsaw hc analysis status





D. Melnychuk, NCBJ Warsaw

hc analysis status

## Signal to background ratio



- In the analysis no PID information was used. In the pp
  → K<sup>+</sup>K<sup>-</sup>π<sup>+</sup>π<sup>-</sup>π<sup>0</sup> background channel no event was reconstructed from 20 M with only 4C Kinematic fit.
- For Physics Book studies the signal to background ratio 8:1 was achieved. The difference comes from the hadronic split-off suppression based on the cluster shape analysis implemented in the software used for Physics Book.

・ロト ・ 理 ト ・ ヨ ト ・

ъ

- Signal reconstruction efficiency in fast simmulation 28.8%.
- With full simulation signal reconstruction efficiency 11.8%
- For physics book analysis reconstruction efficiency was 26%.
- With 28.8 % reconstruction efficiency and luminocity  $L = 10^{31} s^{-1} cm^{-2}$  6 reconstructed  $h_c$  per day is expected.

ヘロン 人間 とくほ とくほ とう

э.

- Using detector setup without Forward spectrometer reduce signal reconstruction efficiency to 25.9% and S/B ratio for  $p\overline{p} \rightarrow K^+K^-K^+K^-\pi^0$  is the same.
- Detector setup without Mvd and GEM. Signal reconstruction efficiency 5.9%. S/B ratio for  $p\overline{p} \rightarrow K^+K^-K^+K^-\pi^0$  is the same within statistical uncertanity.
- Without Barrel EMC still 6.7%  $h_c$  are reconstructed with S/B 1.5 for  $p\overline{p} \rightarrow K^+K^-K^+K^-\pi^0$  channel.

ヘロト ヘアト ヘビト ヘビト

The expected shape of measured resonance in  $\overline{p}p \rightarrow h_c \rightarrow \eta_c \gamma$  is the convolution of the Breit-Wigner resonance curve with the normalised beam energy distribution and an added background term. The expected number of events at the *i*-th data point is:

$$\nu_i = [\varepsilon \times \int Ldt]_i \times [\sigma_{bkgd}(E) + \frac{\sigma_{\rho}\Gamma_R^2/4}{(2\pi)^{1/2}\sigma_i} \times \int \frac{e^{-(E-E')^2/2\sigma_i^2}}{(E'-M_R)^2 + \Gamma_R^2/4} dE']$$

where  $\sigma_i$  is the beam energy resolution at the *i*-th data point,  $\Gamma_R$  and  $M_R$  the resonance width and mass,  $\sigma_p$  incorporates branching ratios for the formation and decay, the factor in square brackets is the product of  $\varepsilon$ , an overall efficiency and acceptance factor and the integrated luminosity at the *i*-th point of measurements.

ヘロン ヘアン ヘビン ヘビン

## Width reconstruction

- Number of reconstructed events were generated at 10 *E<sub>CM</sub>* points around *h<sub>c</sub>* mass smeared with poissonian distribution for given resonance width Γ, time of measurements and S/B ratio.
- Obtained points are fitted and Γ is extracted.
- The procedure is repeated to obtain the distribution of the reconstructed width.
- The RMS of this distribution is considered as an error of the width.



イロト イポト イヨト イヨト

# Width reconstruction



#### Dependence on S/B ratio



イロン 不同 とくほ とくほ とう

2

- Minimal setup includes Central tracker with MvD and GEM and Barrel EMC.
- Reasonable time for  $h_c$  width measurements is around 60 days with  $L = 10^{31} s^{-1} cm^{-2}$ . No resonable results are expected with 0.1 or 0.01 of design luminosity.
- Number of point for resonance scan and step between them can be optimized to minimize time for the width measurements.