

Motivation

arXiv:1107.2023

h_c

- Not well established charmonium state
- Mass: 3525.38 ± 0.11 MeV Singlet partner for χ_{c_J} triplet spin-spin interaction \rightarrow hyperfine mass splitting
- Width: 0.7 \pm 0.4 MeV simply aren't measured precise

Decay modes

Radiative transitions: $h_c \rightarrow \gamma \eta_c$ (Br ~ 50%) Hadronic transitions: $h_c \rightarrow J/\Psi \pi \pi$ (not seen) Hadronic decay: $h_c \rightarrow \pi \pi \pi$

 $\frac{h_c \rightarrow \gamma \eta_c}{h_c \rightarrow hadrons} \sim 1$

Not much information about $h_c \rightarrow hadrons$ channels:

G parity \rightarrow odd number of pions

• $h_c \rightarrow \pi^+ \pi^- \pi^0 < 2.2 \cdot 10^{-3}$ • $h_c \rightarrow 2(\pi^+ \pi^-) \pi^0 (2.2^{+0.8}_{-0.7}) \%$ • $h_c \rightarrow 3(\pi^+ \pi^-) \pi^0 < 2.9 \%$

 $p\bar{p} \rightarrow 2(\pi^+\pi^-)\pi^0$ the largest inelastic channel for $p\bar{p}$

- + high statistic
- significant background

$$h_c: I^G(J^{PC}) = 0^{-}(1^{+-})$$

$$S = Scalar, P = pseudoScalar, V = Vector, V_p = pseudoVector *$$

angular momentum and parity conservation:

$$(-1)^{J_c} P_c = (-1)^{J_1 + J_2} P_1 P_2$$

bb	PV	VV	PS	SS	SV	V _p S	V _p V	V _p P	$V_{p}V_{p}$
—	+	ϵ	+	1	—	+	+	-	—

+ - allowed

- - forbidden by angular momentum and parity conservation
- ϵ forbidden to leading-twist accuracy [1]

QWG report "Heavy quarkonium physics" arXiv:hep-ph/0412158

* skipped in this study

Vectors

•
$$\omega[0^{-}(1^{--})] \rightarrow \pi^{+}\pi^{-}\pi^{0} (89.2 \pm 0.7) \% \pi^{+}\pi^{-} (1.53^{+0.11}_{-0.13}) \%$$

• $\rho[1^{+}(1^{--})] \rightarrow \pi^{+}\pi^{-} (\sim 100) \%$

Scalars

- $f_0(600, 980)[0^+(0^{++})] \rightarrow \pi\pi$ (dominant)
- $f_0(1500)[0^+(0^{++})] \rightarrow \pi\pi (34.9\pm2.3) \%$

•
$$\chi_{c0}(1P)[0^+(0^{++})] \rightarrow \pi\pi \ (8.4 \pm 0.4) \times 10^{-3}$$

Pseudoscalars

• $\eta[0^+(0^{-+})] \rightarrow 3\pi^0 (32.57 \pm 0.23) \% \pi^+ \pi^- \pi^0 (28.1 \pm 0.34) \%$

${\rm h}_c \rightarrow 2(\pi^+\pi^-)\pi^0$

- $\eta \omega$ (+) Br(hc $\rightarrow \eta \omega$) × 0.0043 ~ 0.0043
- $\eta \rho$ (violate I) Br(h_c $\rightarrow \eta \rho$) × 0.28 ~ ($\alpha^2 \times 0.28$)
- $\eta f_0(980)$ (violate G) Br($h_c \rightarrow \eta f_0$) × 0.28 ~ (???)

NB:
$$h_c \rightarrow \pi^+ \pi^- 3\pi^0$$
 via $\eta \rightarrow 3\pi^0$

Simulation

EvtGen for signal

PHSP Model

•
$$p\bar{p} \rightarrow h_c \rightarrow 2(\pi^+\pi^-)\pi^0$$
 with PHSP

Doesn't have a signature \Rightarrow model is needed!

$\eta \omega$ Model

•
$$p\bar{p} \rightarrow h_c \rightarrow P_{seudoscalar} + V_{ector}$$

 $h_c \rightarrow \eta \omega \text{ (HELAMP)}$
 $\eta \rightarrow \pi^+ \pi^- \pi^0 \text{ (PTO3P)}$
 $\omega \rightarrow \pi^+ \pi^- \text{ (VSS)}$

DPM for background

* FastSim (full and reduced set-ups)

$$\star P_{beam} = 5.61 \text{ GeV/c}$$

Detector scenarios

Proposed scenarios

- I MvdGem, EmcBarrel, Drc, Dsc, FwdSpec
- II MvdGem, Drc, Dsc , FwdSpec (w/o barrel EMC)
- III MvdGem, EmcBarrel, Drc, Dsc (w/o FwdSpec)
- IV MvdGem, EmcBarrel, Drc, FwdSpec (w/o Disc DIRC)
- V EmcBarrel, Drc, Dsc, FwdSpec (STT only)

EmcFwd, EmcBw, STT, Barrel MUO are always enabled

+ several very restricted set-ups

$$\pi^0 \to \gamma \gamma$$

• π^0 mass window cut (±50 MeV)

•
$$N_{\pi^0} = 1$$
, $N_{\pi^+} = 2$, $N_{\pi^-} = 2$

$$h_c \rightarrow 2(\pi^+\pi^-)\pi^0$$

$\omega\eta$ analysis model:

- $\omega \rightarrow \pi^+ \pi^- \rightarrow p_{\perp}(p_z)$ check
- $\eta \rightarrow \pi^+ \pi^- \pi^0 \rightarrow p_{\perp}(p_z)$ check
- if both OK for diff $\pi^+\pi^-$ pairs $\rightarrow \omega$ and η mass cuts

4C fit \rightarrow cut on χ^2 , best candidate

Event selection with $p_{\perp}(p_z)$ [Peyrou]

η (right) and ω (left)

Reconstruction efficiency [%] Signal, ηω cut

FwdSpec = complete Forward Spectrometer (Fwd Spec. EMC, Fwd Tracking, RICH, Fwd MUO)
EmcBarrel = EMC barrel for calorimetry (neutral detection and PID component)
Drc = Barrel DIRC for PID, Dsc = Disc DIRC for PID
MvdGem = MVD and GEM for central tracking in addition to STT

PANDA CM, 11 June 2014

Event selection with $p_{\perp}(p_z)$ [Peyrou] $h_c \rightarrow \eta \omega$, $h_c \rightarrow \eta \rho$ and $h_c \rightarrow \eta f_0(1500)$

$p_{\perp}(p_z)$ for ω (red), ρ (blue) and f_0 (green)

due to different mass and widths

 $m^2_{\pi^+\pi^-\pi^0}$

Reconstruction efficiency

Signal, only η mass cut

PANDA CM, 11 June 2014

More strict model helps to suppress background better

Significance $h_c \rightarrow 2(\pi^+\pi^-)\pi^0$

Time for 10^4 events with L= 10^{32}

64, 13 or 7 days respectively for σ_s 10nb, 50 nb or 100 nb

Significance $h_c \rightarrow 2(\pi^+\pi^-)\pi^0$

Time for 10^4 events with L= 10^{32}

64, 13 or 7 days respectively for σ_s 10nb, 50 nb or 100 nb

$$\pi^0
ightarrow \gamma \gamma$$

• π^0 mass window cut (±50 MeV)

•
$$N_{\pi^0} = 3$$
, $N_{\pi^+} = 1$, $N_{\pi^-} = 1$

 $h_c \to \pi^+\pi^- 3\pi^0$

η analysis model:

• $0.25 < M_{3\pi^0}^2 < 0.35$

4C fit \rightarrow cut on χ^2 , best candidate

Reconstruction efficiency Signal, η mass cut

Reconstruction efficiency Background

Significance $h_c \rightarrow \pi^+ \pi^- 3\pi^0$

Time for 10^4 events with L= 10^{32}

58, 12 or 6 days respectively for σ_s 10nb, 50 nb or 100 nb

Significance $h_c \rightarrow \pi^+ \pi^- 3\pi^0$

Time for 10^4 events with L= 10^{32}

58, 12 or 6 days respectively for σ_s 10nb, 50 nb or 100 nb

Minimal set-up

- Full detector
- EmcBar FwdTrk STT MvdGem
- 🗿 EmcBar FwdTrk
- EmcBar STT MvdGem
- EmcBar FwdTrk STT
- EmcBar EmcFwCap FwdTrk STT MvdGem
- EmcBar EmcFwCap EmcBwCap FwdTrk STT MvdGem
- EmcBar EmcFwCap EmcBwCap EmcFwd FwdTrk STT MvdGem
- EmcBar EmcFwd FwdTrk STT MvdGem
- EmcFwCap EmcBwCap EmcFwd FwdTrk STT MvdGem
 - EmcFwd FwdTrk STT MvdGem
- EmcFwCap EmcBwCap FwdTrk STT MvdGem

Essential: EmcBar, STT+MvdGem (4) Helpful: EmcFwCap and FwdTrk (6) + EmcFwd (8)

Efficiency $h_c \rightarrow 2(\pi^+\pi^-)\pi^0$

Efficiency for $h_c \rightarrow \pi^+ \pi^- 3\pi^0$

PANDA CM, 11 June 2014

Results ($P_{beam} = 5.61 \text{ GeV/c}$)

$p\bar{p} \rightarrow h_c \rightarrow 2(\pi^+\pi^-)\pi^0$

• PHSP and PV, PS models were checked

•
$$\epsilon_{sig}$$
 ~ 45 %, ϵ_{bkg} ~ 2.10⁻⁵

• \sim 10–50 weeks to achieve 5 σ significance

$p\bar{p} \rightarrow h_c \rightarrow \pi^+ \pi^- 3\pi^0$

• PHSP and PV models were checked

•
$$\epsilon_{sig}$$
 ~ 40 %, ϵ_{bkg} ~ 5.10⁻⁶

• ~ 2–10 weeks to achieve 5σ significance

Set-up

Min: EmcBar, STT+MvdGem Max: EmcBar(+FwCap+BwCap), EmcFwd, FwdTrk, STT+MvdGem

NB: production mechanism was not simulated \rightarrow impotance of Forward Spectrometer could be underestimated

PANDA CM, 11 June 2014

Reconstructed h_c mass

Production cross-section

Breit-Wiegner Production cross-section:

$$\sigma_{BW}(\sqrt{s}) = \frac{(2J+1) \cdot 4\pi}{s - 4m_p^2} \frac{BR(h_c \to p\bar{p})\Gamma_{h_c}^2}{4(\sqrt{s} - m_{h_c})^2 + \Gamma_{h_c}^2}$$
(1)

 $Measured \ rates \ (red: \ true \ distribution, \ blue: \ reconstructed \ signal+DPM \ bkg)$

Angular distributions of final particles

LAB frame

 $h_c \rightarrow 2(\pi^+\pi^-)\pi^0$

$h_c \rightarrow \pi^+ \pi^- 3 \pi^0$

Efficiency of reconstruction for final state particles

LAB frame

$h_c \rightarrow \pi^+ \pi^- 3 \pi^0$

PANDA CM, 11 June 2014