$$\overline{p}p \to \chi_{c12} \to J/\psi\gamma \to \ell^+\ell^-\gamma$$

$$\overline{p}p \to X(3872) \to J/\psi\pi\pi \to \ell^+\ell^-\pi\pi$$

Elisa Fioravanti

INFN Ferrara

PANDA Collaboration Meeting - GSI 10th - 13th June 2014

Elisa Fioravanti

- $\overline{p}p \to \chi_{c12} \to J/\psi\gamma \to \ell^+\ell^-\gamma$
- $\overline{p}p \rightarrow X(3872) \rightarrow J/\psi \pi^+ \pi^- \rightarrow \ell^+ \ell^- \pi^+ \pi^-$
- $\overline{p}p \rightarrow X(3872) \rightarrow J/\psi \pi^0 \pi^0 \rightarrow \ell^+ \ell^- 4\gamma$

For each process the time needed to achive 5σ significance has been calculated for:

- $\mathcal{L} = 10^{32} \text{ cm}^{-2} \text{s}^{-1}$
- $\mathcal{L} = 10^{31} \text{ cm}^{-2} \text{s}^{-1}$
- $\mathcal{L}{=}10^{30} \text{ cm}^{-2}\text{s}^{-1}$
- Different detector scenario

$\overline{\it p} \it p ightarrow \chi_{c12} ightarrow {\it J}/\psi \gamma ightarrow \ell^+ \ell^- \gamma$

◆ロ > ◆母 > ◆臣 > ◆臣 > ● ● ● ● ●

The measurement of the angular distributions in the radiative decays of the χ_c states provides the multipole structure of the radiative decay and the properties of the $\overline{c}c$ bound state.

The angular distributions of the χ_{c1} and χ_{c2} are described by 4 indipendent parameters:

$a_2(\chi_{c1}), a_2(\chi_{c2}), B_0^2(\chi_{c2}), a_3(\chi_{c2})$

where a_2 and a_3 are the decay amplitudes, B_0^2 is the production amplitude.

χ_{c1} and χ_{c2} angular distributions: Previous results

$$\begin{pmatrix} \frac{a_2(\chi_{c1})}{a_2(\chi_{c2})} \end{pmatrix}_{Th} = \frac{\sqrt{5}}{3} \frac{E_{\gamma}(\chi_{c1} \to J/\psi\gamma)}{E_{\gamma}(\chi_{c2} \to J/\psi\gamma)} = 0.676$$

McClary and Byers (1983) predict that ratio is indipendent of c-quark mass and anomalouse magnetic moment

E835 have been measured for the first time this ratio:

 $\begin{pmatrix} \frac{a_2(\chi_{c1})}{a_2(\chi_{c2})} \end{pmatrix}_{E835} = -0.02 \pm 0.34$ Experimental result is $\sim 2\sigma$ away from prediction.

High statistics measurements of these angular distributions are needed to solve this question

E835 Reference "Ambrogiani et al. Physical Review D, Vol. 65, 05002"

χ_{c1} and χ_{c2} angular distributions

$\overline{p}p \rightarrow \chi_{c1} \rightarrow J/\psi\gamma$

- Production amplitudes: $B_0 = 0$
- Decay Amplitudes: *a*₂ $a_2 = 0.002 \pm 0.032 \pm 0.004$
- * E835 Collaboration, Nucl. Phys. B 717, 34 (2005)

- θ is the polar angle of the J/ψ with respect to the antiproton in the $\overline{p}p$ center of mass system
- θ' is the polar angle of the positron in the J/ψ rest frame with respect to the J/ψ direction in the χ rest of mass system

- ϕ' is the azimuthal angle between the J/ψ decay plane and the χ_c plane

$\overline{p}p \rightarrow \chi_{c2} \rightarrow J/\psi\gamma$

- Production amplitudes: B_0^2 $B_0^2 = 0.16^{+0.09}_{-0.10} \pm 0.01$
- Decay Amplitudes: *a*₂, *a*₃ $a_2 = -0.076^{+0.054}_{-0.050} \pm 0.009$ $a_3 = 0.020^{+0.055}_{-0.044} \pm 0.009$

э

Angular distributions for $\overline{p}p \rightarrow \chi_{c1} \rightarrow J/\psi\gamma$

Elisa Fioravanti

The angles distributions corrected with the efficiency, which is presented in the lower part. The angular distributions for the three angles can be approximately written as:

PANDA Collaboration Meeting - GSI 10th - 13th June 2014

Angular distributions for $\overline{p}p \rightarrow \chi_{c2} \rightarrow J/\psi\gamma$

The angles distributions corrected with the efficiency, which is presented in the lower part. The angular distributions for the three angles can be approximately written as:

PANDA Collaboration Meeting - GSI 10th - 13th June 2014

Elisa Fioravanti

$$\overline{p}p \rightarrow \chi_{c1,2} \rightarrow J/\psi\gamma \rightarrow \ell^+\ell^-\gamma$$

Cross sections

Signal

$$\begin{split} &\sigma(\chi_{c1} \to J/\psi\gamma) \sim 1.7 \text{ nbarn} \\ &\sigma(\chi_{c2} \to J/\psi\gamma) \sim 2 \text{ nbarn} \\ & \mathsf{E835} \text{ Collaboration, Nucl.Phys.B 717,34 (2005)} \end{split}$$

Background

Background: $\bar{p}p \rightarrow \pi^+\pi^-\pi^0$: $\sigma(\chi_{c2})=0.12 \text{ mb}$ CERN-HERA 70-03 (1970)

Fast Simulation

•
$$J/\psi \rightarrow e^+e^-; J/\psi \rightarrow \mu^+\mu^-$$

- PID for Electrons: 1 Electron Loose; 1 Electron Tight (as in the Physics Book)
- PID for Muons: 1 Muon Loose; 1 Muon Tight (as in the Physics Book)
- PID for Photons: Neutral
- Bremsstrahlung effect for the electrons
- MC Truth Match
- 10.000 events generated
- Decay model: $\chi_{c12} \rightarrow J/\psi\gamma$: Chic1toJpsiGam (Chic2toJpsiGam)
- Decay model: $J/\psi \rightarrow \ell^+ \ell^-$: VLL

4C fit is performed and best χ_{c12} candidate in each event is selected by minimal χ^2

$$Significance(t) = \sqrt{\mathcal{L}t} imes rac{\sigma_s \epsilon_s f_{BR}}{\sqrt{\sigma_s \epsilon_s f_{BR} + \sigma_b \epsilon_b}}$$

$$\begin{split} &\sigma_{s}{=}2 \text{ nb [Nucl.Phys.B 717,34(2005)]} \\ &\epsilon_{s}{:} \text{ known from simulation} \\ &\sigma_{b}{=}0.12 \text{ mb [CERN-HERA 70-03 (1970)]} \\ &\epsilon_{b}{=}\text{known from simulation} \\ &f_{BR}{=}\begin{cases} &\mathsf{BR}(\chi_{c1}\rightarrow J/\psi\gamma)\times BR(J/\psi\rightarrow\ell^{+}\ell^{-})=0.020\\ &\mathsf{BR}(\chi_{c2}\rightarrow J/\psi\gamma)\times BR(J/\psi\rightarrow\ell^{+}\ell^{-})=0.011\\ &BR(\chi_{c1}\rightarrow J/\psi\gamma)=0.34 \text{ [PDG]}\\ &BR(\chi_{c2}\rightarrow J/\psi\gamma)=0.19 \text{ [PDG]}\\ &BR(J/\psi\rightarrow\ell^{+}\ell^{-}){=}\begin{cases} &\mathsf{BR}(J/\psi\rightarrow e^{+}e^{-})=0.0594 \text{ [PDG]}\\ &\mathsf{BR}(J/\psi\rightarrow \mu^{+}\mu^{-})=0.0593 \text{ [PDG]} \end{cases} \end{split}$$

Time needed to achive 5σ significance?

・ 同 ト ・ ヨ ト ・ 日 ト …

$J/\psi ightarrow e^+e^-$

Detector Setup	ϵ_{s} (%)	ϵ_b	t ($\mathcal{L}=10^{32}$)	t ($\mathcal{L}=10^{31}$)	t ($\mathcal{L}=10^{30}$)
Full	48.10	1.3×10 ⁻⁶	1.3 days	13.4 days	4.5 months
w/o EmcBarrel	14.15	2.5×10^{-5}	8.8 months	7.4 years	74 years
w/o FwdSpec	40.07	1.2×10^{-6}	1.9 days	19 days	6.3 months
w/o DiscDirc	47.82	1.3×10^{-6}	1.4 days	13.6 days	4.5 months
w/o MvdGem	34.64	1.1×10^{-5}	20.4 days	6.8 months	5.7 years

$J/\overline{\psi} ightarrow \mu^+ \overline{\mu^-}$

Detector Setup	ϵ_{s} (%)	ϵ_b	t ($\mathcal{L}=10^{32}$)	t ($\mathcal{L}=10^{31}$)	t ($\mathcal{L}=10^{30}$)
Full	63.50	1.2×10^{-5}	6.5 days	2.2 months	1.8 years
w/o EmcBarrel	17.88	8.4×10^{-6}	1.9 months	1.6 years	16 years
w/o FwdSpec	54.02	7.8×10^{-6}	5.8 days	1.9 months	1.6 years
w/o DiscDirc	61.02	1.2×10^{-5}	7.0 days	2.3 months	1.9 years
w/o MvdGem	35.67	1.4×10^{-5}	23.7 days	7.9 months	6.6 years

 $\overline{p}p
ightarrow \chi_{c2}
ightarrow J/\psi \gamma
ightarrow \ell^+ \ell^- \gamma$

$J/\psi ightarrow e^+e^-$

Detector Setup	ϵ_{s} (%)	ϵ_b	t ($\mathcal{L}=10^{32}$)	t ($\mathcal{L}=10^{31}$)	t ($\mathcal{L}=10^{30}$)
Full	48.60	1.2×10 ⁻⁶	3.5 days	1.2 months	11.8 months
w/o EmcBarrel	13.90	3.1×10^{-5}	2.9 years	29 years	288 years
w/o FwdSpec	40.80	1.1×10^{-6}	4.7 days	1.6 months	1.3 years
w/o DiscDirc	48.20	1.2×10^{-6}	3.6 days	1.2 months	12.0 months
w/o MvdGem	35.70	3.2×10 ⁻⁶	16.6 days	5.5 months	4.6 years

$J/\overline{\psi} ightarrow \mu^+ \overline{\mu^-}$

Detector Setup	ϵ_{s} (%)	ϵ_b	t ($\mathcal{L}=10^{32}$)	t ($\mathcal{L}=10^{31}$)	t ($\mathcal{L}=10^{30}$)
Full	63.70	1.9×10^{-5}	1.0 months	10.0 months	8.5 years
w/o EmcBarrel	18.60	7.1×10^{-6}	4.4 months	3.7 years	37 years
w/o FwdSpec	56.40	1.5×10^{-5}	1.0 months	10.2 months	8.5 years
w/o DiscDirc	62.90	1.9×10^{-5}	1.0 months	10.5 months	8.7 years
w/o MvdGem	36.15	2.0×10^{-5}	3.3 months	2.7 years	27.4 years

$\overline{p}p \rightarrow X(3872) \rightarrow J/\psi \pi^+ \pi^+ \rightarrow \ell^+ \ell^- \pi^+ \pi^-$

$\overline{p}p \rightarrow X(3872) \rightarrow J/\psi \pi^+ \pi^- \rightarrow \ell^+ \ell^- \pi^+ \pi^-$

- 4 同 6 4 日 6 4 日 6 - 日

$$\overline{p}p
ightarrow X(3872)
ightarrow J/\psi \pi^+\pi^-
ightarrow \ell^+\ell^-\pi^+\pi^-$$

Cross sections

Signal

$$\sigma(\overline{p}p
ightarrow X(3872)
ightarrow J/\psi \pi^+\pi^-) \sim 50$$
 nbarn
Martin J.Galuska, Master Thesis

Background

Background: $\bar{p}p \rightarrow \pi^+\pi^-\pi^+\pi^-$: σ (3.860 GeV)=0.054 mb CERN-HERA 70-03 (1970)

Fast Simulation

•
$$J/\psi \rightarrow e^+e^-; J/\psi \rightarrow \mu^+\mu^-$$

- PID for Electrons: 1 Electron Loose; 1 Electron Tight (as in the Physics Book)
- PID for Muons: 1 Muon Loose; 1 Muon Tight (as in the Physics Book)
- Bremsstrahlung effect for the electrons
- MC Truth Match
- 10.000 events generated
- Decay model: $X(3872) \rightarrow J/\psi \pi^+ \pi^-$: PHSP
- Decay model: $J/\psi \rightarrow \ell^+ \ell^-$: VLL

4C fit is performed and best X(3872) candidate in each event is selected by minimal χ^2

$$Significance(t) = \sqrt{\mathcal{L}t} imes rac{\sigma_{s}\epsilon_{s}f_{BR}}{\sqrt{\sigma_{s}\epsilon_{s}f_{BR}+\sigma_{b}\epsilon_{b}}}$$

$$\begin{split} &\sigma_s{=}50 \text{ nb } [\text{Martin J.Galuska, Master Thesis}] \\ &\epsilon_s: \text{ known from simulation} \\ &\sigma_b{=}0.054 \text{ mb } [\text{CERN-HERA 70-03 (1970)}] \\ &\epsilon_b{=}\text{known from simulation} \\ &f_{BR}{=} BR(X(3872) \rightarrow J/\psi\pi^+\pi^-) \times BR(J/\psi \rightarrow \ell^+\ell^-) = 2.97 \times 10^{-3} \\ &BR(X(3872) \rightarrow J/\psi\pi^+\pi^-) = 0.05 \text{ [Martin J.Galuska, Master Thesis]} \\ &BR(J/\psi \rightarrow e^+e^-) = \begin{cases} BR(J/\psi \rightarrow e^+e^-) = 0.0594 \text{ [PDG]} \\ BR(J/\psi \rightarrow \mu^+\mu^-) = 0.0593 \text{ [PDG]} \end{cases} \end{split}$$

Time needed to achive 5σ significance?

 $\overline{p}p \rightarrow X(3872) \rightarrow J/\psi \pi^+\pi^- \rightarrow \ell^+\ell^-\pi^+\pi^-$

$J/\psi ightarrow e^+e^-$

Detector Setup	ϵ_{s} (%)	ϵ_b	t ($\mathcal{L}=10^{32}$)	t ($\mathcal{L}=10^{31}$)	t ($\mathcal{L}=10^{30}$)
Full	29.09	1.6×10^{-5}	1.4 days	14.0 days	4.7 months
w/o EmcBarrel	27.44	2.2×10^{-3}	6.9 months	5.7 years	57 years
w/o FwdSpec	23.67	2.8×10^{-5}	3.6 days	1.2 months	1.0 years
w/o DiscDirc	28.67	1.6×10^{-5}	1.4 days	14.5 days	4.8 months
w/o MvdGem	8.12	1.0×10^{-5}	10.1 days	3.7 months	3.1 years

$J/\psi ightarrow \mu^+\mu^-$

Detector Setup	ϵ_{s} (%)	ϵ_b	t ($\mathcal{L}=10^{32}$)	t ($\mathcal{L}=10^{31}$)	t ($\mathcal{L}=10^{30}$)
Full	38.83	3.2×10 ⁻⁴	15.1 days	5.0 months	4.2 years
w/o EmcBarrel	36.51	3.7×10^{-4}	19.8 days	6.6 months	5.5 years
w/o FwdSpec	32.15	3.0×10^{-4}	20.7 days	6.9 months	5.7 years
w/o DiscDirc	36.69	2.5×10^{-4}	15.9 days	5.3 months	4.4 years
w/o MvdGem	9.13	4.9×10^{-5}	1.4 months	1.2 years	11.0 years

$\overline{ ho} ho ightarrow X(3872) ightarrow J/\psi \pi^0 \pi^0 ightarrow \ell^+ \ell^- \pi^0 \pi^0$

$\overline{p}p \rightarrow X(3872) \rightarrow J/\psi \pi^0 \pi^0 \rightarrow \ell^+ \ell^- 4\gamma$

э

$$\overline{p}p \rightarrow X(3872) \rightarrow J/\psi \pi^0 \pi^0 \rightarrow \ell^+ \ell^- 4\gamma$$

Cross sections

Background

Background: $\bar{p}p \rightarrow \pi^+\pi^-\pi^0\pi^0$:

 σ (4.351 GeV)=0.050 mb

CERN-HERA 70-03 (1970)

Signal

Assumption:

 $\sigma(\overline{p}p \rightarrow X(3872) \rightarrow J/\psi \pi^0 \pi^0) \sim 50$ nbarn Martin J.Galuska, Master Thesis

• Fast Simulation

•
$$J/\psi \rightarrow e^+e^-$$
; $J/\psi \rightarrow \mu^+\mu^-$; $\pi^0 \rightarrow \gamma\gamma$

- PID for Electrons: 1 Electron Loose; 1 Electron Tight (as in the Physics Book)
- PID for Muons: 1 Muon Loose; 1 Muon Tight (as in the Physics Book)
- Bremsstrahlung effect for the electrons
- MC Truth Match
- 10.000 events generated
- Decay model: $X(3872) \rightarrow J/\psi \pi^0 \pi^0$: PHSP
- Decay model: $J/\psi \rightarrow \ell^+ \ell^-$: VLL
- Decay model: $\pi^0 \rightarrow \gamma\gamma$: PHSP

4C fit is performed and best X(3872) candidate in each event is selected by minimal χ^2

Significance(t) =
$$\sqrt{\mathcal{L}t} \times \frac{\sigma_{s}\epsilon_{s}f_{BR}}{\sqrt{\sigma_{s}\epsilon_{s}f_{BR}+\sigma_{b}\epsilon_{b}}}$$

Assumption: σ_s =50 nb [Martin J.Galuska, Master Thesis] ϵ_s : known from simulation σ_b =0.050 mb [CERN-HERA 70-03 (1970)] ϵ_b =known from simulation f_{BR} = $BR(X(3872) \rightarrow J/\psi\pi^0\pi^0) \times BR(J/\psi \rightarrow \ell^+\ell^-) = 2.97 \times 10^{-3}$ Assumption: $BR(X(3872) \rightarrow J/\psi\pi^0\pi^0) = 0.05$ [Martin J.Galuska, Master Thesis] $BR(J/\psi \rightarrow e^+e^-) = \begin{cases} BR(J/\psi \rightarrow e^+e^-) = 0.0594 \text{ [PDG]} \\ BR(J/\psi \rightarrow \mu^+\mu^-) = 0.0593 \text{ [PDG]} \end{cases}$

Time needed to achive 5σ significance?

 $\overline{
ho}
ho
ightarrow X(3872)
ightarrow J/\psi \pi^0 \pi^0
ightarrow \ell^+ \ell^- 4\gamma$

$J/\psi ightarrow e^+e^-$

Detector Setup	ϵ_{s} (%)	ϵ_b	t ($\mathcal{L}=10^{32}$)	t ($\mathcal{L}=10^{31}$)	t ($\mathcal{L}=10^{30}$)
Full	38.57	2.0×10^{-4}	9.6 days	3.1 months	2.6 years
w/o EmcBarrel	11.20	8.5×10^{-4}	16.0 months	13.3 years	133 years
w/o FwdSpec	21.91	3.4×10^{-4}	1.6 months	1.4 years	13.9 years
w/o DiscDirc	36.98	2.3×10^{-4}	11.9 days	3.9 months	3.3 years
w/o MvdGem	20.74	3.1×10 ⁻⁴	1.7 months	1.4 years	14.2 years

$J/\psi ightarrow \mu^+\mu^-$

Detector Setup	ϵ_{s} (%)	ϵ_b	t ($\mathcal{L}=10^{32}$)	t ($\mathcal{L}=10^{31}$)	t ($\mathcal{L}=10^{30}$)
Full	61.20	8.8×10^{-4}	16.0 days	5.6 months	4.6 years
w/o EmcBarrel	17.30	9.0×10^{-4}	7.1 months	5.9 years	59 years
w/o FwdSpec	35.76	8.9×10^{-4}	1.9 months	1.6 years	16.3 years
w/o DiscDirc	58.61	8.0×10^{-4}	16.6 days	5.5 months	4.6 years
w/o MvdGem	30.67	9.5×10^{-4}	2.4 months	2.0 years	19.9 years

Conclusion

- $\chi_{c12} \rightarrow J/\psi\gamma$:
 - required integrated luminosity: 5 pb⁻¹ [Assumption: cross section 2 nb, s=1000 reconstructed signal events, Efficiency 50%]
 - EMC barrel is essential for photons detection
 - MVD+GEM are important for tracking and vertex reconstruction
 - It seems nor FwdSpec nor DiscDirc are relevant for this channel
- $X(3872) \rightarrow J/\psi \pi^+ \pi^-$:
 - required integrated luminosity: 22 pb^{-1} [Assumption: cross section 50 nb, s=1000 reconstructed signal events, Efficiency 30%]
 - EMC barrel is relevant for e^+e^- channel
 - $\bullet~\ensuremath{\mathsf{MVD+\mathsf{GEM}}}$ are important for tracking and vertex reconstruction
 - It seems nor FwdSpec nor DiscDirc are relevant for this channel
- $X(3872) \rightarrow J/\psi \pi^0 \pi^0$:
 - required integrated luminosity: 22 pb⁻¹ [Assumption: cross section 50 nb, s=1000 reconstructed signal events, Efficiency 30%]
 - EMC barrel is is essential for photons detection
 - MVD+GEM and FwdSpec are important for tracking and vertex reconstruction
 - It seems that DiscDirc is not relevant for this channel

With $\mathcal{L}/10$ some measurements can still be done (especially for e^+e^- channel), but with $\mathcal{L}/100$ these charmonium processes lose the competitiveness.