$$
\begin{gathered}
\bar{p} p \rightarrow \chi_{c 12} \rightarrow J / \psi \gamma \rightarrow \ell^{+} \ell^{-} \gamma \\
\bar{p} p \rightarrow X(3872) \rightarrow J / \psi \pi \pi \rightarrow \ell^{+} \ell^{-} \pi \pi
\end{gathered}
$$

Elisa Fioravanti

INFN Ferrara

PANDA Collaboration Meeting - GSI 10th - 13th June 2014

Outline

- $\bar{p} p \rightarrow \chi_{c 12} \rightarrow J / \psi \gamma \rightarrow \ell^{+} \ell^{-} \gamma$
- $\bar{p} p \rightarrow X(3872) \rightarrow J / \psi \pi^{+} \pi^{-} \rightarrow \ell^{+} \ell^{-} \pi^{+} \pi^{-}$
- $\bar{p} p \rightarrow X(3872) \rightarrow J / \psi \pi^{0} \pi^{0} \rightarrow \ell^{+} \ell^{-} 4 \gamma$

For each process the time needed to achive 5σ significance has been calculated for:

- $\mathcal{L}=10^{32} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- $\mathcal{L}=10^{31} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- $\mathcal{L}=10^{30} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$
- Different detector scenario

$\bar{p} p \rightarrow \chi_{c 12} \rightarrow J / \psi \gamma \rightarrow \ell^{+} \ell^{-} \gamma$

$$
\bar{p} p \rightarrow \chi_{c 12} \rightarrow J / \psi \gamma \rightarrow \ell^{+} \ell^{-} \gamma
$$

Radiative transitions of the $\chi_{c J}$ charmonium states

The measurement of the angular distributions in the radiative decays of the χ_{c} states provides the multipole structure of the radiative decay and the properties of the $\bar{c} c$ bound state.
The angular distributions of the $\chi_{c 1}$ and $\chi_{c 2}$ are described by 4 indipendent parameters:

$$
a_{2}\left(\chi_{c 1}\right), a_{2}\left(\chi_{c 2}\right), B_{0}^{2}\left(\chi_{c 2}\right), a_{3}\left(\chi_{c 2}\right)
$$

where a_{2} and a_{3} are the decay amplitudes, B_{0}^{2} is the production amplitude.

$\chi_{c 1}$ and $\chi_{c 2}$ angular distributions: Previous results

$$
\begin{gathered}
\left(\frac{a_{2}\left(\chi_{c 1}\right)}{a_{2}\left(\chi_{c 2}\right)}\right)_{T h}=\frac{\sqrt{5}}{3} \frac{E_{\gamma}\left(\chi_{c 1} \rightarrow J / \psi \gamma\right)}{E_{\gamma}\left(\chi_{c 2} \rightarrow J / \psi \gamma\right)}= \\
0.676
\end{gathered}
$$

McClary and Byers (1983) predict that ratio is indipendent of c -quark mass and anomalouse magnetic moment

E835 have been measured for the first time this ratio:

$$
\left(\frac{a_{2}\left(\chi_{c 1}\right)}{a_{2}\left(\chi_{c 2}\right)}\right)_{E 835}=-0.02 \pm 0.34
$$

Experimental result is $\sim 2 \sigma$ away from
prediction.
High statistics measurements of these angular distributions are needed to solve this question

E835 Reference "Ambrogiani et al. Physical Review D, Vol. 65, 05002"

$\chi_{c 1}$ and $\chi_{c 2}$ angular distributions

$$
\bar{p} p \rightarrow \chi_{c 1} \rightarrow J / \psi \gamma
$$

- Production amplitudes: $B_{0}=0$
- Decay Amplitudes: a_{2}

$$
a_{2}=0.002 \pm 0.032 \pm 0.004
$$

- θ is the polar angle of the J / ψ with respect to the antiproton in the $\bar{p} p$ center of mass system - θ^{\prime} is the polar angle of the positron in the J / ψ rest frame with respect to the J / ψ direction in the χ rest of mass system - ϕ^{\prime} is the azimuthal angle between the J / ψ decay plane and the χ_{c} plane

$$
\bar{p} p \rightarrow \chi_{c 2} \rightarrow J / \psi \gamma
$$

- Production amplitudes: B_{0}^{2}

$$
B_{0}^{2}=0.16_{-0.10}^{+0.09} \pm 0.01
$$

- Decay Amplitudes: a_{2}, a_{3}

$$
a_{2}=-0.076_{-0.050}^{+0.054} \pm 0.009
$$

$$
a_{3}=0.020_{-0.044}^{+0.055} \pm 0.009
$$

* E835 Collaboration, Nucl. Phys. B 717, 34 (2005)

Angular distributions for $\bar{p} p \rightarrow \chi_{c 1} \rightarrow J / \psi \gamma$

The angles distributions corrected with the efficiency, which is presented in the lower part. The angular distributions for the three angles can be approximately written as:

$$
W(\cos \theta)=1-\frac{1}{3} \cos ^{2} \theta ; \quad W\left(\cos \theta^{\prime}\right)=1-\frac{1}{3} \cos ^{2} \theta^{\prime} ; \quad W(\phi)=\text { flat }
$$

Angular distributions for $\bar{p} p \rightarrow \chi_{c 2} \rightarrow J / \psi \gamma$

The angles distributions corrected with the efficiency, which is presented in the lower part. The angular distributions for the three angles can be approximately written as:

$$
W(\cos \theta)=1-\frac{1}{3} \cos ^{2} \theta ; \quad W\left(\cos \theta^{\prime}\right)=1-\frac{1}{3} \cos ^{2} \theta^{\prime} ; \quad W\left(\phi^{\prime}\right)=1-\frac{8}{71} \cos \left(2 \phi^{\prime}\right)
$$

$\bar{p} p \rightarrow \chi_{c 1,2} \rightarrow J / \psi \gamma \rightarrow \ell^{+} \ell^{-} \gamma$

Cross sections

Signal

$\sigma\left(\chi_{c 1} \rightarrow J / \psi \gamma\right) \sim 1.7$ nbarn
$\sigma\left(\chi_{c 2} \rightarrow J / \psi \gamma\right) \sim 2$ nbarn
E835 Collaboration, Nucl.Phys.B 717,34 (2005)

Background

Background: $\bar{p} p \rightarrow \pi^{+} \pi^{-} \pi^{0}$: $\sigma\left(\chi_{c 2}\right)=0.12 \mathrm{mb}$ CERN-HERA 70-03 (1970)

- Fast Simulation
- $J / \psi \rightarrow e^{+} e^{-} ; J / \psi \rightarrow \mu^{+} \mu^{-}$
- PID for Electrons: 1 Electron Loose; 1 Electron Tight (as in the Physics Book)
- PID for Muons: 1 Muon Loose; 1 Muon Tight (as in the Physics Book)
- PID for Photons: Neutral
- Bremsstrahlung effect for the electrons
- MC Truth Match
- 10.000 events generated
- Decay model: $\chi_{c 12} \rightarrow J / \psi \gamma$: Chic1toJpsiGam (Chic2toJpsiGam)
- Decay model: $J / \psi \rightarrow \ell^{+} \ell^{-}:$VLL

4C fit is performed and best $\chi_{c 12}$ candidate in each event is selected by minimal χ^{2}

Significance

$$
\text { Significance }(t)=\sqrt{\mathcal{L} t} \times \frac{\sigma_{s} \epsilon_{s} f_{B R}}{\sqrt{\sigma_{s} \epsilon_{s} f_{B R}+\sigma_{b} \epsilon_{b}}}
$$

$\sigma_{s}=2 \mathrm{nb}$ [Nucl.Phys.B 717,34(2005)]
ϵ_{s} : known from simulation
$\sigma_{b}=0.12 \mathrm{mb}$ [CERN-HERA 70-03 (1970)]
$\epsilon_{b}=$ known from simulation
$f_{B R}=\left\{\begin{array}{l}\operatorname{BR}\left(\chi_{c 1} \rightarrow J / \psi \gamma\right) \times B R\left(J / \psi \rightarrow \ell^{+} \ell^{-}\right)=0.020 \\ \operatorname{BR}\left(\chi_{c 2} \rightarrow J / \psi \gamma\right) \times B R\left(J / \psi \rightarrow \ell^{+} \ell^{-}\right)=0.011\end{array}\right.$
$B R\left(\chi_{c 1} \rightarrow J / \psi \gamma\right)=0.34$ [PDG]
$B R\left(\chi_{c 2} \rightarrow J / \psi \gamma\right)=0.19$ [PDG]
$B R\left(J / \psi \rightarrow \ell^{+} \ell^{-}\right)=\left\{\begin{array}{l}\operatorname{BR}\left(\mathrm{J} / \psi \rightarrow e^{+} e^{-}\right)=0.0594 \text { [PDG] } \\ \operatorname{BR}\left(\mathrm{J} / \psi \rightarrow \mu^{+} \mu^{-}\right)=0.0593[\mathrm{PDG}]\end{array}\right.$
Time needed to achive 5σ significance?

$\bar{p} p \rightarrow \chi_{c 1} \rightarrow J / \psi \gamma \rightarrow \ell^{+} \ell^{-} \gamma$

$J / \psi \rightarrow e^{+} e^{-}$

Detector Setup	$\epsilon_{s}(\%)$	ϵ_{b}	$\mathrm{t}\left(\mathcal{L}=10^{32}\right)$	$\mathrm{t}\left(\mathcal{L}=10^{31}\right)$	$\mathrm{t}\left(\mathcal{L}=10^{30}\right)$
Full	48.10	1.3×10^{-6}	1.3 days	13.4 days	4.5 months
w/o EmcBarrel	14.15	2.5×10^{-5}	8.8 months	7.4 years	74 years
w/o FwdSpec	40.07	1.2×10^{-6}	1.9 days	19 days	6.3 months
w/o DiscDirc	47.82	1.3×10^{-6}	1.4 days	13.6 days	4.5 months
w/o MvdGem	34.64	1.1×10^{-5}	20.4 days	6.8 months	5.7 years

$$
J / \psi \rightarrow \mu^{+} \mu^{-}
$$

Detector Setup	$\epsilon_{s}(\%)$	ϵ_{b}	$\mathrm{t}\left(\mathcal{L}=10^{32}\right)$	$\mathrm{t}\left(\mathcal{L}=10^{31}\right)$	$\mathrm{t}\left(\mathcal{L}=10^{30}\right)$
Full	63.50	1.2×10^{-5}	6.5 days	2.2 months	1.8 years
w/o EmcBarrel	17.88	8.4×10^{-6}	1.9 months	1.6 years	16 years
w/o FwdSpec	54.02	7.8×10^{-6}	5.8 days	1.9 months	1.6 years
w/o DiscDirc	61.02	1.2×10^{-5}	7.0 days	2.3 months	1.9 years
w/o MvdGem	35.67	1.4×10^{-5}	23.7 days	7.9 months	6.6 years

$\bar{p} p \rightarrow \chi_{c 2} \rightarrow J / \psi \gamma \rightarrow \ell^{+} \ell^{-} \gamma$

$J / \psi \rightarrow e^{+} e^{-}$

Detector Setup	$\epsilon_{s}(\%)$	ϵ_{b}	$\mathrm{t}\left(\mathcal{L}=10^{32}\right)$	$\mathrm{t}\left(\mathcal{L}=10^{31}\right)$	$\mathrm{t}\left(\mathcal{L}=10^{30}\right)$
Full	48.60	1.2×10^{-6}	3.5 days	1.2 months	11.8 months
w/o EmcBarrel	13.90	3.1×10^{-5}	2.9 years	29 years	288 years
w/o FwdSpec	40.80	1.1×10^{-6}	4.7 days	1.6 months	1.3 years
w/o DiscDirc	48.20	1.2×10^{-6}	3.6 days	1.2 months	12.0 months
w/o MvdGem	35.70	3.2×10^{-6}	16.6 days	5.5 months	4.6 years

$$
J / \psi \rightarrow \mu^{+} \mu^{-}
$$

Detector Setup	$\epsilon_{s}(\%)$	ϵ_{b}	$\mathrm{t}\left(\mathcal{L}=10^{32}\right)$	$\mathrm{t}\left(\mathcal{L}=10^{31}\right)$	$\mathrm{t}\left(\mathcal{L}=10^{30}\right)$
Full	63.70	1.9×10^{-5}	1.0 months	10.0 months	8.5 years
w/o EmcBarrel	18.60	7.1×10^{-6}	4.4 months	3.7 years	37 years
w/o FwdSpec	56.40	1.5×10^{-5}	1.0 months	10.2 months	8.5 years
w/o DiscDirc	62.90	1.9×10^{-5}	1.0 months	10.5 months	8.7 years
w/o MvdGem	36.15	2.0×10^{-5}	3.3 months	2.7 years	27.4 years

$\bar{p} p \rightarrow X(3872) \rightarrow J / \psi \pi^{+} \pi^{+} \rightarrow \ell^{+} \ell^{-} \pi^{+} \pi^{-}$

$$
\bar{p} p \rightarrow X(3872) \rightarrow J / \psi \pi^{+} \pi^{-} \rightarrow \ell^{+} \ell^{-} \pi^{+} \pi^{-}
$$

Cross sections

Signal

$\sigma\left(\bar{p} p \rightarrow X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right) \sim 50$ nbarn Martin J.Galuska, Master Thesis

Background

Background: $\bar{p} p \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$: $\sigma(3.860 \mathrm{GeV})=0.054 \mathrm{mb}$ CERN-HERA 70-03 (1970)

- Fast Simulation
- $J / \psi \rightarrow e^{+} e^{-} ; J / \psi \rightarrow \mu^{+} \mu^{-}$
- PID for Electrons: 1 Electron Loose; 1 Electron Tight (as in the Physics Book)
- PID for Muons: 1 Muon Loose; 1 Muon Tight (as in the Physics Book)
- Bremsstrahlung effect for the electrons
- MC Truth Match
- 10.000 events generated
- Decay model: $X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}$: PHSP
- Decay model: $J / \psi \rightarrow \ell^{+} \ell^{-}:$VLL

4C fit is performed and best $X(3872)$ candidate in each event is selected by minimal χ^{2}

Significance

$$
\text { Significance }(t)=\sqrt{\mathcal{L} t} \times \frac{\sigma_{\epsilon} \epsilon_{f} f_{B R}}{\sqrt{\sigma_{s} \epsilon_{s} f_{B}+\sigma_{b} \epsilon_{b}}}
$$

$$
\begin{aligned}
& \sigma_{s}=50 \mathrm{nb} \text { [Martin J.Galuska, Master Thesis] } \\
& \epsilon_{s}: \text { known from simulation } \\
& \sigma_{b}=0.054 \mathrm{mb} \text { [CERN-HERA 70-03 (1970)] } \\
& \epsilon_{b}=\text { known from simulation } \\
& f_{B R}=B R\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right) \times B R\left(J / \psi \rightarrow \ell^{+} \ell^{-}\right)=2.97 \times 10^{-3} \\
& B R\left(X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}\right)=0.05[\text { Martin J.Galuska, Master Thesis] } \\
& B R\left(J / \psi \rightarrow e^{+} e^{-}\right)=\left\{\begin{array}{l}
\operatorname{BR}\left(J / \psi \rightarrow e^{+} e^{-}\right)=0.0594 \text { [PDG] } \\
\operatorname{BR}\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right)=0.0593 \text { [PDG] }
\end{array}\right.
\end{aligned}
$$

Time needed to achive 5σ significance?

$\bar{p} p \rightarrow X(3872) \rightarrow J / \psi \pi^{+} \pi^{-} \rightarrow \ell^{+} \ell^{-} \pi^{+} \pi^{-}$

$J / \psi \rightarrow e^{+} e^{-}$

Detector Setup	$\epsilon_{s}(\%)$	ϵ_{b}	$\mathrm{t}\left(\mathcal{L}=10^{32}\right)$	$\mathrm{t}\left(\mathcal{L}=10^{31}\right)$	$\mathrm{t}\left(\mathcal{L}=10^{30}\right)$
Full	29.09	1.6×10^{-5}	1.4 days	14.0 days	4.7 months
w/o EmcBarrel	27.44	2.2×10^{-3}	6.9 months	5.7 years	57 years
w/o FwdSpec	23.67	2.8×10^{-5}	3.6 days	1.2 months	1.0 years
w/o DiscDirc	28.67	1.6×10^{-5}	1.4 days	14.5 days	4.8 months
w/o MvdGem	8.12	1.0×10^{-5}	10.1 days	3.7 months	3.1 years

$$
J / \psi \rightarrow \mu^{+} \mu^{-}
$$

Detector Setup	$\epsilon_{s}(\%)$	ϵ_{b}	$\mathrm{t}\left(\mathcal{L}=10^{32}\right)$	$\mathrm{t}\left(\mathcal{L}=10^{31}\right)$	$\mathrm{t}\left(\mathcal{L}=10^{30}\right)$
Full	38.83	3.2×10^{-4}	15.1 days	5.0 months	4.2 years
w/o EmcBarrel	36.51	3.7×10^{-4}	19.8 days	6.6 months	5.5 years
w/o FwdSpec	32.15	3.0×10^{-4}	20.7 days	6.9 months	5.7 years
w/o DiscDirc	36.69	2.5×10^{-4}	15.9 days	5.3 months	4.4 years
w/o MvdGem	9.13	4.9×10^{-5}	1.4 months	1.2 years	11.0 years

$\bar{p} p \rightarrow X(3872) \rightarrow J / \psi \pi^{0} \pi^{0} \rightarrow \ell^{+} \ell^{-} \pi^{0} \pi^{0}$

$$
\bar{p} p \rightarrow X(3872) \rightarrow J / \psi \pi^{0} \pi^{0} \rightarrow \ell^{+} \ell^{-} 4 \gamma
$$

$\bar{p} p \rightarrow X(3872) \rightarrow J / \psi \pi^{0} \pi^{0} \rightarrow \ell^{+} \ell^{-} 4 \gamma$

Cross sections

Signal

Assumption:

$\sigma\left(\bar{p} p \rightarrow X(3872) \rightarrow J / \psi \pi^{0} \pi^{0}\right) \sim 50$ nbarn
Martin J.Galuska, Master Thesis

Background

Background: $\bar{p} p \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}$: $\sigma(4.351 \mathrm{GeV})=0.050 \mathrm{mb}$ CERN-HERA 70-03 (1970)

- Fast Simulation
- J/ $\psi \rightarrow e^{+} e^{-} ; J / \psi \rightarrow \mu^{+} \mu^{-} ; \pi^{0} \rightarrow \gamma \gamma$
- PID for Electrons: 1 Electron Loose; 1 Electron Tight (as in the Physics Book)
- PID for Muons: 1 Muon Loose; 1 Muon Tight (as in the Physics Book)
- Bremsstrahlung effect for the electrons
- MC Truth Match
- 10.000 events generated
- Decay model: $X(3872) \rightarrow J / \psi \pi^{0} \pi^{0}$: PHSP
- Decay model: $J / \psi \rightarrow \ell^{+} \ell^{-}$: VLL
- Decay model: $\pi^{0} \rightarrow \gamma \gamma$: PHSP

4C fit is performed and best $X(3872)$ candidate in each event is selected by minimal χ^{2}

Significance

$$
\text { Significance }(t)=\sqrt{\mathcal{L} t} \times \frac{\sigma_{s} \epsilon_{f} f_{B R}}{\sqrt{\sigma_{s} \epsilon_{f} f_{B R}+\sigma_{b} \epsilon_{b}}}
$$

Assumption: $\sigma_{s}=50 \mathrm{nb}$ [Martin J.Galuska, Master Thesis]
ϵ_{s} : known from simulation
$\sigma_{b}=0.050 \mathrm{mb}$ [CERN-HERA 70-03 (1970)]
$\epsilon_{b}=$ known from simulation
$f_{B R}=B R\left(X(3872) \rightarrow J / \psi \pi^{0} \pi^{0}\right) \times B R\left(J / \psi \rightarrow \ell^{+} \ell^{-}\right)=2.97 \times 10^{-3}$
Assumption: $\quad B R\left(X(3872) \rightarrow J / \psi \pi^{0} \pi^{0}\right)=0.05$ [Martin J.Galuska, Master Thesis]
$B R\left(J / \psi \rightarrow e^{+} e^{-}\right)=\left\{\begin{array}{l}\operatorname{BR}\left(\mathrm{J} / \psi \rightarrow e^{+} e^{-}\right)=0.0594 \text { [PDG] } \\ \operatorname{BR}\left(J / \psi \rightarrow \mu^{+} \mu^{-}\right)=0.0593 \text { [PDG] }\end{array}\right.$
Time needed to achive 5σ significance?

$\bar{p} p \rightarrow X(3872) \rightarrow J / \psi \pi^{0} \pi^{0} \rightarrow \ell^{+} \ell^{-} 4 \gamma$

$J / \psi \rightarrow e^{+} e^{-}$

Detector Setup	$\epsilon_{s}(\%)$	ϵ_{b}	$\mathrm{t}\left(\mathcal{L}=10^{32}\right)$	$\mathrm{t}\left(\mathcal{L}=10^{31}\right)$	$\mathrm{t}\left(\mathcal{L}=10^{30}\right)$
Full	38.57	2.0×10^{-4}	9.6 days	3.1 months	2.6 years
w/o EmcBarrel	11.20	8.5×10^{-4}	16.0 months	13.3 years	133 years
w/o FwdSpec	21.91	3.4×10^{-4}	1.6 months	1.4 years	13.9 years
w/o DiscDirc	36.98	2.3×10^{-4}	11.9 days	3.9 months	3.3 years
w/o MvdGem	20.74	3.1×10^{-4}	1.7 months	1.4 years	14.2 years

$$
J / \psi \rightarrow \mu^{+} \mu^{-}
$$

Detector Setup	$\epsilon_{s}(\%)$	ϵ_{b}	$\mathrm{t}\left(\mathcal{L}=10^{32}\right)$	$\mathrm{t}\left(\mathcal{L}=10^{31}\right)$	$\mathrm{t}\left(\mathcal{L}=10^{30}\right)$
Full	61.20	8.8×10^{-4}	16.0 days	5.6 months	4.6 years
w/o EmcBarrel	17.30	9.0×10^{-4}	7.1 months	5.9 years	59 years
w/o FwdSpec	35.76	8.9×10^{-4}	1.9 months	1.6 years	16.3 years
w/o DiscDirc	58.61	8.0×10^{-4}	16.6 days	5.5 months	4.6 years
w/o MvdGem	30.67	9.5×10^{-4}	2.4 months	2.0 years	19.9 years

Conclusion

- $\chi_{c 12} \rightarrow J / \psi \gamma$:
- required integrated luminosity: $5 \mathrm{pb}^{-1}$ [Assumption: cross section 2 nb , $s=1000$ reconstructed signal events, Efficiency 50\%]
- EMC barrel is essential for photons detection
- MVD+GEM are important for tracking and vertex reconstruction
- It seems nor FwdSpec nor DiscDirc are relevant for this channel
- $X(3872) \rightarrow J / \psi \pi^{+} \pi^{-}$:
- required integrated luminosity: $22 \mathrm{pb}^{-1}$ [Assumption: cross section 50 nb , $s=1000$ reconstructed signal events, Efficiency 30\%]
- EMC barrel is relevant for $e^{+} e^{-}$channel
- MVD+GEM are important for tracking and vertex reconstruction
- It seems nor FwdSpec nor DiscDirc are relevant for this channel
- $X(3872) \rightarrow J / \psi \pi^{0} \pi^{0}$:
- required integrated luminosity: $22 \mathrm{pb}^{-1}$ [Assumption: cross section 50 nb , $s=1000$ reconstructed signal events, Efficiency 30\%]
- EMC barrel is is essential for photons detection
- MVD+GEM and FwdSpec are important for tracking and vertex reconstruction
- It seems that DiscDirc is not relevant for this channel

With $\mathcal{L} / 10$ some measurements can still be done (especially for $e^{+} e^{-}$channel), but with $\mathcal{L} / 100$ these charmonium processes lose the competitiveness.

