PANDA XLIX. Collaboration Meeting

Update on Simulations of the Ds Semileptonic Decay Form Factor

Lu Cao

11th June, 2014

Outline

- Significance on Ds semileptonic decay
- Reconstruction of neutral pion
- Kinematics of lepton-neutrino system
- Reco. efficiency in FastSim & FullSim
- Updated reconstruction results in FullSim
- Summary & outlook

Significance on Ds Semileptonic Decay

- Semileptonic decays Ds-> e + v + η,η' are an excellent environment for precision measurements of the CKM matrix elements |V_{cd}| and |V_{cs}|.
- Form factor encapsulates QCD boundstate effects; relates to the probability of forming final state at given invariant mass squared of the lepton-neutrino system q².
- The investigation opens a new approach to improve the measurement of mixing angle for η and η'.

Reconstruction of Neutral Pion

Photon energy scaling method

Invariant mass of two-photon: $m_{\gamma\gamma} = \sqrt{2E_{\gamma_1}E_{\gamma_2}(1-\cos\theta_{\gamma\gamma})}$

Photon energy $E_{\gamma i}$ will be scaled to $E_{\gamma i}^{REC}$:

with $E_{\gamma i}^{REC}$ and angular information fixed, the 4-momenta of pi0 can be written as:

$$p_{\pi} = p_{\gamma_1}^{\text{REC}} + p_{\gamma_2}^{\text{REC}}$$

 $E_{\gamma_i}^{\text{REC}} = \frac{m_{\pi}}{m} E_{\gamma_i}$

Nucl. Instr. and Meth. A 453 (2000) 606 pdf

Reconstruction of the π° kinematics from $\gamma\gamma$ decay K. Korzecka, T. Matulewicz*

Institute of Experimental Physics, Warsaw University, Hoża 69, PL-00-681 Warszawa, Poland

This method is appropriate when the accuracy of the angular measurements is much better compared to the energy measurements.

Otherwise, not only the photon energies have to be corrected, but also their emission angles (kinematical fit). 11.06.2014 Simulation on Measurement of Ds Semileptonic Form Factor 2k evt #24910

Cuttings in energy scaling method: photon energy > 0.02 GeV width of mass window on $m_{\gamma\gamma}$: 0.014 GeV/c opening angle > 0.1 (1 evt not fulfill)

Cuttings in **mcf method**: photon energy > 0.02 GeV width of mass window: 0.014 GeV/c mcf chi2 < 0.0005

2k evt #24910

 v_e

η

Kinematics of Lepton-neutrino System

Invariant mass squared of lepton-neutrino:

$$q^{2}(e^{+}v_{e}) = \left(E_{p\overline{p}} - E_{Ds^{-}} - E_{\eta}\right)^{2} - \left|\vec{P}_{p\overline{p}} - \vec{P}_{Ds^{-}} - \vec{P}_{\eta}\right|^{2}$$

- FaSim (enable bremsstrahlung and neutral clusters merging)
- 10k evt at $\sqrt{s} = 4.108$ GeV
- Ideal PID (#25009)

Mass squared of v_e candidates

 Ds^{-}

 Ds^+

pp

6/11/2014

MC Truth

MC Truth

Updated Reconstruction Results in FullSim

- 10k evt $\sqrt{s} = 4.108$ GeV (ideal PID, #25009)
- photon energy scaling in pi0 reconstruction
- photon energy threshold: 20 MeV
- γγ minimum opening angle: 0.1 rad
- $\gamma\gamma$ mass window: 135 ± 7 MeV/c²
- D_s^- mass window: 1968 \pm 250 MeV/c²
- η mass window: 548 \pm 270 MeV/c²

Ds Resolution	M [MeV/c ^{2]}	Vx Ι [μm]	Vy [µm]	Vz [µm]	Pt [%]	Pz [%]
	14	75	73	160	3.0	1.4
eta Resolution	M [MeV/c²]	Vx [µm]	Vy [µm]	Vz [µm]	Pt [%]	Pz [%]
	7.5	363	319	943	2.1	1.8

Reco. efficiency in FastSim & FullSim

10k evt (ideal PID, #25009)

Full Sim

Fast S	im
--------	----

paritcle		entries	eff.		paritcle		entries	eff.
<i>e</i> ⁺		7315	73%		<i>e</i> ⁺		8023	80%
	all	4302				all	6845	
D_s^-	vtx	2849			D_s^-			
	mcf	1590	16%			mcf	5288	53%
	$\pi^+\pi^-$ all	9952			η	eta all	5348	
	$\pi^+\pi^-$ vtx	7434						
η	eta all	4526				eta mcf	4127	110/
	eta mcf	2021	20%					4170
	all	360034			π^0	all	15342	
π^0	mass win.	14351				mass win.	8543	
	$\theta_{\gamma\gamma} > 0.1$	14346				$\theta_{\gamma\gamma} > 0.1$	8543	
$(a^{\dagger}n)$	w/o cut	374	3.7%		(e^+v_e)	w/o cut	2204	22%
$(\boldsymbol{e}^{*}\boldsymbol{v}_{e})$	w. cut	151	1.5%	%		w. cut	1511	15.1%

Reco. efficiency in FastSim & FullSim

10k evt (ideal PID, #25009)

Full Sim

paritcle		entries	eff.		paritcle		entries	eff.
<i>e</i> ⁺		7315	73%		<i>e</i> ⁺		8023	80%
	all	4302				all	6845	
D_s^-	vtx	2849			D_s^-			
	mcf	1590	16%			mcf	5288	53%
	$\pi^+\pi^-$ all	9952			η	eta all	5348	
	$\pi^+\pi^-$ vtx	7434						
η	eta all	4526				eta mcf	4127	440/
	eta mcf	2021	20%					4170
	all	360034			π^0	all	15342	
π^0	mass win.	14351				mass win.	8543	
	$\theta_{\gamma\gamma}>0.1$	14346				$\theta_{\gamma\gamma} > 0.1$	8543	
$(a^{\dagger}n)$	w/o cut	374	3.7%		(e ⁺ v _e)	w/o cut	2204	22%
$(\boldsymbol{e} \cdot \boldsymbol{v}_{e})$	w. cut	151	1.5%			w. cut	1511	15.1%

Summary and outlook

- Use photon energy scaling method in pi0 reconstruction
- Reconstructions in FastSim & FullSim are compared
- Efficiency lepton-neutrino system is ~3.7% (80 evt/mon)

- Improve eff. in FullSim (eg. vtx reso., tracking eff.)
- Include η' decay in present simulation
- Investigate background channels

PANDA XLIX. Collaboration Meeting @ GSI

Thank you

I.cao@fz-juelich.de

Backup Slides

Reconstruction of neutral pion

Two ways:

- mass constraint fit for two photons (PndKinFitter in PandaRoot) fitter fixed since #24893
- photon energy scaling method Nucl. Instr. and Meth. A 453 (2000) 606

Cutting 1: photon energy > 0.02 GeV

Cutting 2: opening angle > 0.1 rad

2k evt #24910

Simulation on Measurement of Ds Semileptonic Form Factor

FastSim: bremsstrahlung and neutrals merging

VLL

Talk by Ronald Kunne:

π⁰ box simulation 0.2 – 10 GeV

Test with my decay chain

htemp 450 11785 Entries 0.8592 Mean kTrue 0.5514 400 RMS 350 300 250 200 150 100 counts ግሊቦ 50 E 0 L 0 2.5 1.5 3 pi0Compoang htemp 9883 Entries 400 0.8216 Mean kFalse RMS 0.5559 350 300 250 200 150 100 50<u>–</u>

1.5

2.5

3

pi0Compoang

Opening angle of two-photon(pi0)

6/11/2014

0.5

оĘ

Form factor of Ds⁺ -> eta e+ nu_e

Differential decay rate (massless lepton):

$$\eta(p)|\bar{s}\gamma_{\mu}(1-\gamma_{5})c|D_{s}(p+q)\rangle = 2f_{+}^{D_{s}\to\eta}(q^{2})p_{\mu} + (f_{+}^{D_{s}\to\eta}(q^{2}) + f_{-}^{D_{s}\to\eta}(q^{2}))q_{\mu}$$

Light cone QCD sum rules

J.Phys.G 38 (2011) 095001 arXiv:1011.6046[hep-ph]

$$\frac{d\Gamma}{dq^2}(D_s \to (\eta, \eta') l\nu_l) = \frac{G_F^2 |V_{cs}|^2}{192\pi^3 m_{D_s}^3} \left[(m_{D_s}^2 + m_{\eta'}^2 - q^2)^2 - 4m_{D_s}^2 m_{(\eta, \eta')}^2 \right]^{3/2} |f_+^{D_s \to \eta''}(q^2)|^2$$

Parameterization of the q² dependence so the form factors:

$$f_{\pm}(q^2) = \frac{f_{\pm}(0)}{1 - \alpha \hat{q} + \beta \hat{q}^2} \qquad \hat{q} = q^2 / m_{D_s}^2$$

with

	$f_+^{D_s \to \eta}(0)$	α	β
This Work (LCSR)	0.45 ± 0.14	1.96 ± 0.63	1.12 ± 0.36

Simulation on Measurement of Ds Semileptonic Form Factor

The

Main requirements for EMC

	Required performance value					
Common properties						
energy resolution σ_E/E	$\leq 1\% \oplus \frac{\leq 2\%}{\sqrt{E/CeV}}$					
energy threshold (photons) E_{thres}	$10 \mathrm{MeV} \ (20 \mathrm{MeV} \ \mathrm{tolerable})$					
energy threshold (single crystal) E_{xtl}	$3{ m MeV}$	MeV				
rms noise (energy equiv.) $\sigma_{E,noise}$	$1 \mathrm{MeV}$				A A A A A A A A A A A A A A A A A A A	
angular coverage $\% 4\pi$	99%					
mean-time-between-failures t_{mtbf}	$2000\mathrm{y}$					
(for individual channel)					Barrel and forward end-can EMC	
Subdetector specific properties	backward	barrel	forwar	rd		
	$(\geq 140^\circ)$	$(\geq 22^{\circ})$	$(\geq 5^{\circ})$)		
energy range from E_{thres} to	$0.7{ m GeV}$	$7.3{ m GeV}$	14.6 (GeV	Reconstruction thresholds	
angular equivalent of crystal size θ	4°		1°			
spatial resolution σ_{θ}	0.5°	0.3°	0.1°		• $E_{xtl} = 3 \mathrm{MeV}$	
maximum signal load f_{γ} ($E_{\gamma} > E_{xtl}$)	$60 \mathrm{k}$	Hz	$500\mathrm{kH}$	Ηz	• $E_{\rm el} = 10 {\rm MeV}$	
(pp-events) maximum signal load f_{γ} ($E_{\gamma} > E_{xtl}$)	1001	кНz	$500\mathrm{kH}$	Ηz		
(all events) shaping time t_s	400	ns	$100\mathrm{ns}$		• $E_{max} = 20 \mathrm{MeV}$	
radiation hardness	$0.15\mathrm{Gy}$	$7{ m Gy}$	$125\mathrm{Gy}$	y		
(maximum annual dose pp-events)						
radiation hardness	10 (Gy	$125\mathrm{Gy}$	у	Dynamical Energy Range	
(maximum annual dose from all events)				1		
				• bac	ckward endcap EMC: $10(20)$ MeV- 0.7 G	
				• bar	rrel EMC: $10(20)$ MeV- 7.3 GeV, and	
				• for	ward endcap EMC: 10(20) MeV- 14.6 Ge	

٧

Production Rate of Ds pair

with high luminosity mode in 35 days

 $R = \mathcal{L} \cdot \boldsymbol{\sigma} \cdot \boldsymbol{\varepsilon} \cdot \boldsymbol{t} \cdot \mathcal{BR} \qquad \boldsymbol{\sigma} = A \, nb = A \times 10^{-9} \, b \qquad \boldsymbol{\varepsilon} = B\%$

 $= 2 \times 10^{32} (cm^{-2}s^{-1}) \cdot \mathbf{A}(nb) \times 10^{-24} (cm^{2}/b) \cdot \mathbf{B} \times 10^{-2} \cdot 3 \times 10^{6}(s) \cdot 2.67\% \times 5.49\% \times 22.74\%$ $\sim 2\mathbf{AB} = \mathbf{2} \times \mathbf{20} \times \mathbf{3.7} = \mathbf{148}$