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Motivation

4

coupling constants are given by

f
Λ

+
c ND = −

1√
3
(1 + 2α)fNNπ ≈ −1.04 fNNπ,

fΣcND = (1 − 2α)fNNπ ≈ 0.2 fNNπ, (3)

where we assumed for the F/(F+D) ratio α ≈ 0.4. Thus,
one expects that Λ+

c exchange dominates the transition
while Σc exchange should be suppressed. Specifically,
considering the quark content of the Λ+

c and of the D

mesons this implies that V p̄p→D0D̄0 ≫ V p̄p→D+D−

. In-
deed, within the Born approximation the cross sections
predicted for D0D̄0 are more than two orders of magni-
tude larger than those for D+D−, cf. the dotted lines
Fig. 3. (The coupling constant fNΣ∗K , and accordingly
for fNΣ∗

c
D, is likewise very small [51] so that the contri-

bution of Σ∗ (Σ∗
c) exchange turns out to be negligible.)

The vertex form factors adopted in Refs. [14, 15] for the
N̄N annihilation diagrams are not of the conventional
monopole type but involve fourth powers of the cutoff
mass Λ, of the exchanged baryon, and of the transferred
momentum, see Eq. (2.15) in Ref. [14]. Such a more
complicated parameterization was required in order to
avoid unphysical singularities in the potential. We em-
ploy the same form here. In the actual calculation a cut-
off mass Λ of 3.5 GeV at the Y ND vertices is used. This
choice is motivated by the experience gained in our stud-
ies of N̄N → MM annihilation processes in the past and,
specifically, in N̄N → K̄K where cutoff masses that are
roughly 1 GeV larger than the masses of the exchanged
baryons were found to be appropriate. We will come back
to (and explore) the sensitivity of the results to variations
of the cutoff mass below.
Let us now focus on the effects of the initial state inter-

action. Those effects are included by solving the formal
coupled-channel equations

T N̄N,N̄N = V N̄N,N̄N

+ V N̄N,N̄NGN̄NT N̄N,N̄N , (4)

TDD̄,N̄N = V DD̄,N̄N

+ V DD̄,N̄NGN̄NT N̄N,N̄N , (5)

utilizing the N̄N potential described in Sect. II.
Of course, Eq. (5) implies that the N̄N → DD̄ transition
amplitude is effectively evaluated in a DWBA.
Results with inclusion of ISI effects are presented as

bands in Fig. 3 because we consider several variants of
the N̄N potential as discussed in the previous section.
It is obvious that the results change drastically once the
ISI is included in the calculation. The cross sections for
D0D̄0 are strongly reduced while at the same time those
for D+D− are enhanced. Indeed now both DD̄ channels
are produced at a comparable rate. In fact, the predicted
cross section for D+D− appears to be even somewhat
larger than the one for D0D̄0.
Whereas the reduction in the D0D̄0 case is in line

with comparable effects observed in the previous stud-
ies of N̄N annihilation processes [23, 25–27], as men-
tioned above, the enhancement seen for D+D− may be

somewhat suprising, at least at first sight. However, it
can be easily understood if one recalls that the Λ+

c has
positive charge and, therefore, cannot contribute to the
p̄p → D−D+ transition potential. Only Σc (and Σ∗

c) ex-
change contribute. But their coupling constants are very
small according to SU(4) symmetry (cf. Eq. (3)) and the
somewhat larger masses reduces the Σc-exchange contri-
butions further. This is the reason why the p̄p → D+D−

cross section is strongly suppressed in Born approxima-
tion. However, once we take into account the ISI, two-
step transitions of the form p̄p → n̄n → D+D− become
possible and are generated within the employed DWBA
approach (5). Neither of these two steps is suppressed
so that the ISI leads to an actual enhancement of the
p̄p → D+D− cross section.

B. p̄p → DD̄ based on the quark model

We consider a p̄p → DD̄ transition potential derived
in a constituent quark model where two light quark pairs
(ūu and d̄d) are annihilated and a charmed quark pair
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III. THE REACTION p̄p → DD̄

A. p̄p → DD̄ based on baryon exchange

Within meson-baryon dynamics the transition from p̄p
to DD̄ is generated by the exchange of charmed baryons,
in particular the Λc and Σc (in analogy to the exchange
of Λ and Σ in case of the reaction p̄p → K̄K), see Fig. 2.
Explicit expressions for the transition potentials can be
found in Appendix A of Ref. [14]. They are of the generic
form

V N̄N→DD̄(t) ∼
∑

Y =Λ
+
c ,Σc,Σ∗

c

f2
Y ND F 2

Y ND(t)

ωD(
√
s− EN − ωD − EY )

,

(2)
where fY ND are coupling constants, FY ND(t) are vertex
form factors and EN , ωD, EY are the energies of the nu-
cleon, D-meson and the exchanged baryon, respectively.
Under the assumption of SU(4) symmetry the pertinent
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FIG. 4: Microscopic quark-model mechanism for the transi-
tion potential: annihilation of two pairs of light quarks, qq̄ =
uū, dd̄, and creation of a pair of heavier quarks, QQ̄ = ss̄, cc̄.

(c̄c) is created – see Fig. 4. We base our study on the
model of Kohno and Weise (KW) [28] for the p̄p → K̄K
reaction; we replace parameters corresponding to the
s−quark and K−meson of that model by those of the
c−quark and D−meson. The quark-model N̄N → DD̄
transition potential V N̄N→DD̄

Q (t) can be written as

V N̄N→DD̄
Q (t) = χ†

N̄
[h1(t)σ · p+ h2(t)σ · p]χN , (6)

where p and p′ are the N̄N and DD̄ center-of-mass
(c.m.) momenta, χN and χN̄ are the spin Pauli spinors
of the nucleon and antinucleon, and h1(t) and h2(t) de-
pend upon quark masses and hadron sizes, and the ef-
fective strength of quark-pair annihilation and creation
– their explicit expressions are given in Appendix B.
A specific feature of the quark-model potential is that

V p̄p→D0D̄0

Q = −V p̄p→D+D−

Q (see Appendix B), so that
there is no isospin I = 0 transition. This is in contrast
to the transitions induced by Λ+

c and Σc exchange, as
discussed above.
Before presenting the results for p̄p → DD̄, let us

first examine the performance of the model in the re-
action p̄p → K−K+ for which there are experimental
data available. We use standard quark-model values for
quark masses and size parameters (they are given in Ap-
pendix B). And in order to facilite a comparison with
the results of Kohno and Weise we use the same value
for the effective coupling strength αA/m2

G as in their
study of that reaction, namely αA/m2

G = 0.15 fm2. The
employed ISI is the same as for the DD̄ case discussed
above, but with parameters of the optical potential fit-
ted to low-energy N̄N data (cf. OBEPF in Table IV of
Ref. [39]). As visible from Fig. 5 (dashed line) the result
is roughly in line with the available data and it is also
close to the original result of Kohno and Weise [28]. The
differences are presumably due to the different ISI used
by them and by us. Actually, with a slight reduction
of the effective coupling strength (αA/m2

G = 0.12 fm2)
the bulk of the K−K+ data can be quantitatively repro-
duced, see the solid curve in the figure. Thus, we will

use this smaller coupling constant in the following calcu-
lations of charmed meson production to be on the safe
side.

200 400 600 800 1000
plab (MeV/c)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

σ
to

t (m
b)

Hasan 
Mandelkern
Sai
Sugimoto

Tanimori

pp -> K-K+

FIG. 5: Cross section for p̄p → K−K+ scattering as a func-
tion of plab. Results are based on the quark model. The
curves correspond to different values for the effective cou-
pling strength αA/m

2
G – 0.12 fm2 (solid line) or 0.15 fm2

(dashed line) – see discussion in the text. Data are taken
from Refs. [52–56].

The quark model results for p̄p → DD̄ are shown in
Fig. 3. Clearly, because the transitionsD+D− andD0D̄0

are of the same magnitude, the corresponding cross sec-
tions calculated in Born approximation are the same.
Moreover, for the same reason, the two-step transitions
p̄p → N̄N → D+D− and p̄p → N̄N → D0D̄0 that make
up the ISI provide equal reductions for both final states.
Fig. 3 also reveals that the quark model and baryon-
exchange transitions yield comparable predictions, with
those of the quark model being on average smaller by a
factor roughly equal to 3. In addition, the results show
once more the fundamental role played by the ISI in the
p̄p annihilation process, as the two transition mechanisms
have very different isospin dependence and yet the final
results are of comparable magnitude.
Predictions for the differential cross sections based on

the baryon-exchange transition potential are presented in
Fig. 6 at the excess energy ϵ = 40 MeV (corresponding
to plab = 6.578 GeV/c). We show the results for the dif-
ferent ISI separately so that one can see the variations
induced by the individual N̄N potentials. The overall
variation at this energy amounts to roughly a factor 2.
In all cases there is only a rather weak dependence of the
D0D̄0 and D+D− cross sections on the scattering angle
which is a clear sign for the dominance of s-wave produc-
tion. This is not surprising in view of the fact that the
production mechanism is of rather short range. In this
context it is instructive to recall the selection rules for the
production of two pseudoscalar mesons [14]. Conserva-
tion of total angular momentum and parity implies that
the lowest two partial-wave amplitudes are given by the
transitions 3P0 → s and 3S1 → p where the first sym-

4

coupling constants are given by

f
Λ

+
c ND = −

1√
3
(1 + 2α)fNNπ ≈ −1.04 fNNπ,

fΣcND = (1 − 2α)fNNπ ≈ 0.2 fNNπ, (3)

where we assumed for the F/(F+D) ratio α ≈ 0.4. Thus,
one expects that Λ+

c exchange dominates the transition
while Σc exchange should be suppressed. Specifically,
considering the quark content of the Λ+

c and of the D

mesons this implies that V p̄p→D0D̄0 ≫ V p̄p→D+D−

. In-
deed, within the Born approximation the cross sections
predicted for D0D̄0 are more than two orders of magni-
tude larger than those for D+D−, cf. the dotted lines
Fig. 3. (The coupling constant fNΣ∗K , and accordingly
for fNΣ∗

c
D, is likewise very small [51] so that the contri-

bution of Σ∗ (Σ∗
c) exchange turns out to be negligible.)

The vertex form factors adopted in Refs. [14, 15] for the
N̄N annihilation diagrams are not of the conventional
monopole type but involve fourth powers of the cutoff
mass Λ, of the exchanged baryon, and of the transferred
momentum, see Eq. (2.15) in Ref. [14]. Such a more
complicated parameterization was required in order to
avoid unphysical singularities in the potential. We em-
ploy the same form here. In the actual calculation a cut-
off mass Λ of 3.5 GeV at the Y ND vertices is used. This
choice is motivated by the experience gained in our stud-
ies of N̄N → MM annihilation processes in the past and,
specifically, in N̄N → K̄K where cutoff masses that are
roughly 1 GeV larger than the masses of the exchanged
baryons were found to be appropriate. We will come back
to (and explore) the sensitivity of the results to variations
of the cutoff mass below.
Let us now focus on the effects of the initial state inter-

action. Those effects are included by solving the formal
coupled-channel equations

T N̄N,N̄N = V N̄N,N̄N

+ V N̄N,N̄NGN̄NT N̄N,N̄N , (4)

TDD̄,N̄N = V DD̄,N̄N

+ V DD̄,N̄NGN̄NT N̄N,N̄N , (5)

utilizing the N̄N potential described in Sect. II.
Of course, Eq. (5) implies that the N̄N → DD̄ transition
amplitude is effectively evaluated in a DWBA.
Results with inclusion of ISI effects are presented as

bands in Fig. 3 because we consider several variants of
the N̄N potential as discussed in the previous section.
It is obvious that the results change drastically once the
ISI is included in the calculation. The cross sections for
D0D̄0 are strongly reduced while at the same time those
for D+D− are enhanced. Indeed now both DD̄ channels
are produced at a comparable rate. In fact, the predicted
cross section for D+D− appears to be even somewhat
larger than the one for D0D̄0.
Whereas the reduction in the D0D̄0 case is in line

with comparable effects observed in the previous stud-
ies of N̄N annihilation processes [23, 25–27], as men-
tioned above, the enhancement seen for D+D− may be

somewhat suprising, at least at first sight. However, it
can be easily understood if one recalls that the Λ+

c has
positive charge and, therefore, cannot contribute to the
p̄p → D−D+ transition potential. Only Σc (and Σ∗

c) ex-
change contribute. But their coupling constants are very
small according to SU(4) symmetry (cf. Eq. (3)) and the
somewhat larger masses reduces the Σc-exchange contri-
butions further. This is the reason why the p̄p → D+D−

cross section is strongly suppressed in Born approxima-
tion. However, once we take into account the ISI, two-
step transitions of the form p̄p → n̄n → D+D− become
possible and are generated within the employed DWBA
approach (5). Neither of these two steps is suppressed
so that the ISI leads to an actual enhancement of the
p̄p → D+D− cross section.

B. p̄p → DD̄ based on the quark model

We consider a p̄p → DD̄ transition potential derived
in a constituent quark model where two light quark pairs
(ūu and d̄d) are annihilated and a charmed quark pair

6.0 6.5 7.0 7.5 8.0
plab (GeV/c)

10-3

10-2

10-1

100

σ
to

t (µ
b)

pp -> D0D0

6.0 6.5 7.0 7.5 8.0
plab (GeV/c)

10-3

10-2

10-1

100

σ
to

t (µ
b)

pp -> D+D-

FIG. 3: Total reaction cross sections for p̄p → DD̄ as a func-
tion of plab, based on baryon-exchange (shaded band) and
the quark model (grid). Results obtained in Born approx-
imation are indicated by the dotted (baryon-exchange) and
dash-dotted (quark model) lines, respectively.

Citation: C. Amsler et al. (Particle Data Group), PL B667, 1 (2008) (URL: http://pdg.lbl.gov)

Γ30 ρ0 e+ νe ( 2.2 ±0.4 ) × 10−3

Γ31 ρ0µ+ νµ ( 2.4 ±0.4 ) × 10−3

Γ32 ω e+ νe ( 1.6 +0.7
−0.6 ) × 10−3

Γ33 φe+ νe < 2.01 % CL=90%

Γ34 φµ+ νµ < 2.04 % CL=90%

Γ35 ηℓ+ νℓ < 7 × 10−3 CL=90%

Γ36 η′(958)µ+ νµ < 1.1 % CL=90%

Fractions of some of the following modes with resonances have already
appeared above as submodes of particular charged-particle modes.

Γ37 K∗(892)0 e+ νe ( 5.49±0.31) % S=1.2

Γ38 K∗(892)0µ+ νµ ( 5.4 ±0.4 ) % S=1.1

Γ39 K1(1270)0 µ+ νµ

Γ40 K∗(1410)0 µ+ νµ

Γ41 K∗
0(1430)0 µ+ νµ < 2.5 × 10−4

Γ42 K∗
2(1430)0 µ+ νµ

Γ43 K∗(1680)0 µ+ νµ < 1.5 × 10−3

Hadronic modes with a K or K K KHadronic modes with a K or K K KHadronic modes with a K or K K KHadronic modes with a K or K K K
Γ44 K0

S π+ ( 1.45±0.04) % S=1.3

Γ45 K0
Lπ+ ( 1.46±0.05) %

Γ46 K−π+π+ [b] ( 9.22±0.21) % S=1.1

Γ47 (K−π+)S−waveπ+ ( 7.54±0.26) %

Γ48 K∗
0(800)0π+ , K∗

0(800) →
K−π+

[c]

Γ49 K∗
0(1430)0π+ ,

K∗
0(1430)0 → K−π+

[c]

Γ50 K∗(892)0 π+ ,
K∗(892)0 → K−π+

( 1.22±0.09) %

Γ51 K∗
2(1430)0π+ ,

K∗
2(1430)0 → K−π+

[c] ( 3.0 ±0.8 ) × 10−4

Γ52 K∗(1680)0π+ ,
K∗(1680)0 → K−π+

[c] ( 1.6 ±0.6 ) × 10−3

Γ53 K−π+π+ nonresonant [c]

Γ54 K0
S π+π0 [b] ( 6.8 ±0.5 ) % S=1.9

Γ55 K0
S ρ+ ( 4.6 ±1.0 ) %

Γ56 K∗(892)0 π+ ,
K∗(892)0 → K0

S π0
( 1.3 ±0.6 ) %

Γ57 K0
S π+π0 nonresonant ( 9 ±7 ) × 10−3

Γ58 K−π+π+π0 [b] ( 6.00±0.20) % S=1.2

Γ59 K∗(892)0 ρ+ total,
K∗(892)0 → K−π+

( 1.3 ±0.8 ) %

HTTP://PDG.LBL.GOV Page 3 Created: 7/17/2008 18:15

http://arxiv.org/find/hep-ph/1/au:+Haidenbauer_J/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Haidenbauer_J/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Krein_G/0/1/0/all/0/1
http://arxiv.org/find/hep-ph/1/au:+Krein_G/0/1/0/all/0/1
http://arxiv.org/abs/1404.4174
http://arxiv.org/abs/1404.4174


M
itg

lie
d 

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

MONTE CARLO

3



M
itg

lie
d 

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

4

EvtGen

• EvtGen implements Dalitz decay for channel
• Based on CLEO-c data (2008),

previously based on E691 data (1993)
EvtResonance2	
  DplusRes12(p4_p,moms3,moms1,	
  1.0,	
  0.0,	
  0.0503,	
  0.896,	
  1,	
  true);	
  //	
  K*(892)
EvtResonance2	
  DplusRes22(p4_p,moms3,moms1,	
  3.0,	
  49.7-­‐180.0,	
  0.164,	
  1.463,	
  0);	
  //	
  K*(1430)
EvtResonance2	
  DplusRes32(p4_p,moms3,moms1,	
  0.96,	
  -­‐29.9+180.0,	
  0.109,	
  1.4324,	
  2,	
  true);	
  //	
  K*_2(1430)
EvtResonance2	
  DplusRes42(p4_p,moms3,moms1,	
  6.5,	
  29.0,	
  0.323,	
  1.717,	
  1,	
  true);	
  //	
  K*(1680)
EvtResonance2	
  DplusRes52(p4_p,moms3,moms1,	
  5.01,	
  -­‐163.7+180.0,	
  0.470,	
  0.809,	
  0);	
  //	
  kappa(800)
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Dalitz plot analysis of D = lt m.n. decays
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+Decays of the D meson to K ~+a. and K m+n. and of the D+ to K ~+a+ have been analyzed for

resonant substructure. We present results on the amplitudes and phases of each decay mode and corn-
pare the results with other measurements. We confirm the highly nonresonant nature of the D+ to
K ~+a+ decays. There is general agreement with theoretical models for the branching ratios mea-
sured.

PACS number(s): 13.25.+m, 14.40.Ev, 14.40.Jz

I. INTRODUCTION

Hadronic decays of charmed particles have been a sub-
ject of much study in the past few years as new informa-
tion from experiments has become available. Theorists
have attempted to understand these data and have made
predictions concerning hadronic decays [1,2]. Since the
charm quark is not very heavy, charm hadrons decay
mainly into two, three, and four particles. Here we ex-
amine three-body decays of the D meson to E
and K m+m. and of the D+ to K ~+m+ to determine
the fractions into two-body modes and the relative phases
of the decay amplitudes. In this paper we implicitly in-
clude decays of antiparticles.

Now at Cornell University, Ithaca, NY.
Now at CERN, Geneva, Switzerland.' Now at Electro Magnetic Applications, Inc. , Denver, CO.

( ]Now at Nichols Research, Colorado Springs, CO.
~ Now at Harvard University, Cambridge, MA.
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~g Now at SLAC, Stanford, CA."Now at Mainz University, Mainz, Germany.
' Now at the Univ. of California, Irvine, CA.
~]Deceased.
"Now at Tufts University, Medford, MA.

The data sample comes from the fixed-target photopro-
duction experiment E691 done at Fermilab during 1985
and described elsewhere [3]. The experiment recorded
100X 10 events from which approximately 10,000 charm
particle decays were reconstructed. We first describe the
reconstruction and analysis common to all three modes
and then describe the event selection specific to individu-
al modes.

II. EVENT SELECTION
Events were selected by requiring that the D meson de-

cay tracks satisfy a vertex hypothesis with a y per de-
grees of freedom (y /ND„) less than 3.5, that the recon-
structed candidate D point back to within 80 pm of the
primary vertex in the transverse plane, and that the pri-
mary vertex itself have a y'/N»(6. We further re-
quired that the separation of the primary and secondary
vertices along the beam direction divided by the error on
this quantity be larger than 6. In all three decay modes
we required that the charged tracks go through at least
one of our two analysis magnets and that each track have
a particle identification probability based on Cerenkov in-
formation of at least 50%.
In the case of the D+~K m+m+ decays, we required

that there be no other tracks within 100 pm of the secon-
dary vertex in the transverse direction. A signal of
4149+79 events results (Fig. 1). In order to minimize
backgrounds in both the D decay modes, we select only

0556-2821/93/48(1)/56(7)/$06. 00 56 1993 The American Physical Society
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Abstract
We perform a Dalitz plot analysis of D+ → K−π+π+ decay with the CLEO-c data set of

572 pb−1 of e+e− collisions accumulated at the ψ(3770). This corresponds to 1.6 × 106 D+D−

pairs from which we select 140793 candidate events with a small background of 1.1%. We compare

our results with previous measurements using the isobar model. We modify the isobar model with
an improved description of some of the contributing resonances, and get better agreement with
our data. We also consider a quasi-model-independent approach and measure the magnitude and

phase of the contributing Kπ S wave in the range of invariant masses from the threshold to the
maximum in this decay. This gives an improved descriptions of our data over the isobar model.
Finally we allow for an isospin-two π+π+ S wave contribution, and find that adding this to both

the isobar model and the quasi-model-independent approach gives the best description of our data.

2

E691 CLEO-c
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FIG. 2: (a) Dalitz plot for data and their projections on (b) m2(Kπ) (two entries per event), and

(c) m2(ππ) variables.

FIG. 3: Invariant mass resolutions before the kinematic fit for (a) m(Kπ)high, (b) m(Kπ)low, and
(c) m(ππ).

C. Fit method

In order to describe the event density distribution on the Dalitz plot we use a probability
density function (p.d.f.), P(x, y), which depends on the event sample being fit:

P(x, y) =

⎧

⎪

⎨

⎪

⎩

Nεε(x, y) for efficiency,
NBB(x, y) for background,
fsigNS|M(x, y)|2ε(x, y) + (1 − fsig)NBB(x, y) for signal with background,

(3)
where the ε(x, y) and B(x, y) are the functions representing the shape of the efficiency and
background, respectively, across the Dalitz plot. The signal p.d.f. is proportional to the
efficiency-corrected matrix element squared |M(x, y)|2, defined in Sec. III, whose fraction
fsig is introduced earlier. The background term has a relative (1 − fsig) fraction. All p.d.f.
components are normalized separately using the normalization integrals over the Dalitz plot
area 1/Nε =

∫

ε(x, y)dxdy, 1/NB =
∫

B(x, y)dxdy, and 1/NS =
∫

|M(x, y)|2ε(x, y)dxdy,
which provides the overall p.d.f. normalization,

∫

P(x, y)dxdy = 1. The p.d.f. free parame-

6

M
itg

lie
d 

de
r H

el
m

ho
ltz

-G
em

ei
ns

ch
af

t

MC – Comparison

5

J. C. ANJOS et al.

III. ANALYSIS
Our technique for creating and fitting Dalitz plots

is described here using the high-statistics mode
D+~K m+~+ as an illustration. The same technique
was used in all three modes. For the displayed D+ Dal-
itz plot, we randomly order the two identical pions; the
fitting functions are symmeterized, and so it does not
affect the results. The Dalitz plots for the region contain-
ing the signal and for events in the background region are

shown in Fig. 2. Events are constrained to lie within the
Dalitz-plot boundary by forcing the D+ candidate mass
[5] to 1.8693 GeV/c and the D candidate mass to [5]
1.8645 GeV/c by scaling the momenta of the decay par-
ticles. These constraints reduce the smearing of events
within the Dalitz plot. In the D +—+K m+ m+ and
D —+K m+m modes the observed decay particles are all
charged and hence the smearing was small. The three de-
cay momenta were therefore scaled by the same factor.
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FIG. 2. Dalitz plots for (a) the D+—+K m+~+ events in the signal region, (b) the D+—+K ~+a events in the background re-
gion, and (c) the D+~K m. m+ simulated background.
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FIG. 2: (a) Dalitz plot for data and their projections on (b) m2(Kπ) (two entries per event), and

(c) m2(ππ) variables.

FIG. 3: Invariant mass resolutions before the kinematic fit for (a) m(Kπ)high, (b) m(Kπ)low, and
(c) m(ππ).

C. Fit method

In order to describe the event density distribution on the Dalitz plot we use a probability
density function (p.d.f.), P(x, y), which depends on the event sample being fit:

P(x, y) =

⎧

⎪

⎨

⎪

⎩

Nεε(x, y) for efficiency,
NBB(x, y) for background,
fsigNS|M(x, y)|2ε(x, y) + (1 − fsig)NBB(x, y) for signal with background,

(3)
where the ε(x, y) and B(x, y) are the functions representing the shape of the efficiency and
background, respectively, across the Dalitz plot. The signal p.d.f. is proportional to the
efficiency-corrected matrix element squared |M(x, y)|2, defined in Sec. III, whose fraction
fsig is introduced earlier. The background term has a relative (1 − fsig) fraction. All p.d.f.
components are normalized separately using the normalization integrals over the Dalitz plot
area 1/Nε =

∫

ε(x, y)dxdy, 1/NB =
∫

B(x, y)dxdy, and 1/NS =
∫

|M(x, y)|2ε(x, y)dxdy,
which provides the overall p.d.f. normalization,

∫

P(x, y)dxdy = 1. The p.d.f. free parame-
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III. ANALYSIS
Our technique for creating and fitting Dalitz plots

is described here using the high-statistics mode
D+~K m+~+ as an illustration. The same technique
was used in all three modes. For the displayed D+ Dal-
itz plot, we randomly order the two identical pions; the
fitting functions are symmeterized, and so it does not
affect the results. The Dalitz plots for the region contain-
ing the signal and for events in the background region are

shown in Fig. 2. Events are constrained to lie within the
Dalitz-plot boundary by forcing the D+ candidate mass
[5] to 1.8693 GeV/c and the D candidate mass to [5]
1.8645 GeV/c by scaling the momenta of the decay par-
ticles. These constraints reduce the smearing of events
within the Dalitz plot. In the D +—+K m+ m+ and
D —+K m+m modes the observed decay particles are all
charged and hence the smearing was small. The three de-
cay momenta were therefore scaled by the same factor.
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FIG. 2. Dalitz plots for (a) the D+—+K m+~+ events in the signal region, (b) the D+—+K ~+a events in the background re-
gion, and (c) the D+~K m. m+ simulated background.
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FIG. 2: (a) Dalitz plot for data and their projections on (b) m2(Kπ) (two entries per event), and

(c) m2(ππ) variables.

FIG. 3: Invariant mass resolutions before the kinematic fit for (a) m(Kπ)high, (b) m(Kπ)low, and
(c) m(ππ).

C. Fit method

In order to describe the event density distribution on the Dalitz plot we use a probability
density function (p.d.f.), P(x, y), which depends on the event sample being fit:

P(x, y) =

⎧

⎪

⎨

⎪

⎩

Nεε(x, y) for efficiency,
NBB(x, y) for background,
fsigNS|M(x, y)|2ε(x, y) + (1 − fsig)NBB(x, y) for signal with background,

(3)
where the ε(x, y) and B(x, y) are the functions representing the shape of the efficiency and
background, respectively, across the Dalitz plot. The signal p.d.f. is proportional to the
efficiency-corrected matrix element squared |M(x, y)|2, defined in Sec. III, whose fraction
fsig is introduced earlier. The background term has a relative (1 − fsig) fraction. All p.d.f.
components are normalized separately using the normalization integrals over the Dalitz plot
area 1/Nε =

∫

ε(x, y)dxdy, 1/NB =
∫

B(x, y)dxdy, and 1/NS =
∫

|M(x, y)|2ε(x, y)dxdy,
which provides the overall p.d.f. normalization,

∫

P(x, y)dxdy = 1. The p.d.f. free parame-
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III. ANALYSIS
Our technique for creating and fitting Dalitz plots

is described here using the high-statistics mode
D+~K m+~+ as an illustration. The same technique
was used in all three modes. For the displayed D+ Dal-
itz plot, we randomly order the two identical pions; the
fitting functions are symmeterized, and so it does not
affect the results. The Dalitz plots for the region contain-
ing the signal and for events in the background region are

shown in Fig. 2. Events are constrained to lie within the
Dalitz-plot boundary by forcing the D+ candidate mass
[5] to 1.8693 GeV/c and the D candidate mass to [5]
1.8645 GeV/c by scaling the momenta of the decay par-
ticles. These constraints reduce the smearing of events
within the Dalitz plot. In the D +—+K m+ m+ and
D —+K m+m modes the observed decay particles are all
charged and hence the smearing was small. The three de-
cay momenta were therefore scaled by the same factor.
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FIG. 2. Dalitz plots for (a) the D+—+K m+~+ events in the signal region, (b) the D+—+K ~+a events in the background re-
gion, and (c) the D+~K m. m+ simulated background.
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FIG. 2: (a) Dalitz plot for data and their projections on (b) m2(Kπ) (two entries per event), and

(c) m2(ππ) variables.

FIG. 3: Invariant mass resolutions before the kinematic fit for (a) m(Kπ)high, (b) m(Kπ)low, and
(c) m(ππ).

C. Fit method

In order to describe the event density distribution on the Dalitz plot we use a probability
density function (p.d.f.), P(x, y), which depends on the event sample being fit:

P(x, y) =

⎧

⎪

⎨

⎪

⎩

Nεε(x, y) for efficiency,
NBB(x, y) for background,
fsigNS|M(x, y)|2ε(x, y) + (1 − fsig)NBB(x, y) for signal with background,

(3)
where the ε(x, y) and B(x, y) are the functions representing the shape of the efficiency and
background, respectively, across the Dalitz plot. The signal p.d.f. is proportional to the
efficiency-corrected matrix element squared |M(x, y)|2, defined in Sec. III, whose fraction
fsig is introduced earlier. The background term has a relative (1 − fsig) fraction. All p.d.f.
components are normalized separately using the normalization integrals over the Dalitz plot
area 1/Nε =

∫

ε(x, y)dxdy, 1/NB =
∫

B(x, y)dxdy, and 1/NS =
∫

|M(x, y)|2ε(x, y)dxdy,
which provides the overall p.d.f. normalization,

∫

P(x, y)dxdy = 1. The p.d.f. free parame-
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III. ANALYSIS
Our technique for creating and fitting Dalitz plots

is described here using the high-statistics mode
D+~K m+~+ as an illustration. The same technique
was used in all three modes. For the displayed D+ Dal-
itz plot, we randomly order the two identical pions; the
fitting functions are symmeterized, and so it does not
affect the results. The Dalitz plots for the region contain-
ing the signal and for events in the background region are

shown in Fig. 2. Events are constrained to lie within the
Dalitz-plot boundary by forcing the D+ candidate mass
[5] to 1.8693 GeV/c and the D candidate mass to [5]
1.8645 GeV/c by scaling the momenta of the decay par-
ticles. These constraints reduce the smearing of events
within the Dalitz plot. In the D +—+K m+ m+ and
D —+K m+m modes the observed decay particles are all
charged and hence the smearing was small. The three de-
cay momenta were therefore scaled by the same factor.
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FIG. 2. Dalitz plots for (a) the D+—+K m+~+ events in the signal region, (b) the D+—+K ~+a events in the background re-
gion, and (c) the D+~K m. m+ simulated background.
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MC – Comparison
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FIG. 2: (a) Dalitz plot for data and their projections on (b) m2(Kπ) (two entries per event), and

(c) m2(ππ) variables.

FIG. 3: Invariant mass resolutions before the kinematic fit for (a) m(Kπ)high, (b) m(Kπ)low, and
(c) m(ππ).

C. Fit method

In order to describe the event density distribution on the Dalitz plot we use a probability
density function (p.d.f.), P(x, y), which depends on the event sample being fit:

P(x, y) =

⎧

⎪

⎨

⎪

⎩

Nεε(x, y) for efficiency,
NBB(x, y) for background,
fsigNS|M(x, y)|2ε(x, y) + (1 − fsig)NBB(x, y) for signal with background,

(3)
where the ε(x, y) and B(x, y) are the functions representing the shape of the efficiency and
background, respectively, across the Dalitz plot. The signal p.d.f. is proportional to the
efficiency-corrected matrix element squared |M(x, y)|2, defined in Sec. III, whose fraction
fsig is introduced earlier. The background term has a relative (1 − fsig) fraction. All p.d.f.
components are normalized separately using the normalization integrals over the Dalitz plot
area 1/Nε =

∫

ε(x, y)dxdy, 1/NB =
∫

B(x, y)dxdy, and 1/NS =
∫

|M(x, y)|2ε(x, y)dxdy,
which provides the overall p.d.f. normalization,

∫

P(x, y)dxdy = 1. The p.d.f. free parame-
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Momentum Distribution (pt vs pz)
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FastSim Coordinates

• Based on Klaus‘ ana_jpsi.C
• PID algorithms: KaonBest, MuonBest

13

theAnalysis-­‐>FillList(kminus,	
  "KaonBestMinus",	
  pidalg);
theAnalysis-­‐>FillList(piplus,	
  	
  "PionBestPlus",	
  pidalg);
	
   	
  
dpluslist.Combine(kminus,	
  piplus,	
  piplus);
dpluslist.SetType(411);

• p momentum: 6.5 GeV/c
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Number Of Combined D± per Event
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FastSim

σ = 11 MeV/c
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FastSim

σ = 45 MeV/c
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FastSim

σ = 18 MeV/c2
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σ = 54 µm

FastSim
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