Calculations on $\Lambda_c \overline{\Lambda}_c$ and $D \overline{D}$ production

W. Schweiger

Karl-Franzens-Universität Graz

Collaborators:

A.T. Goritschnig, S. Kofler (Univ. Graz), P. Kroll (Univ. Wuppertal), B. Pire (Ecole Polytech. Palaiseau)

(June 11th, 2014, PANDA XLIX. Coll. Meeting, GSI)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Theoretical Situation

Outcome of theoretical descriptions of $p\bar{p} \longrightarrow \Lambda_c \bar{\Lambda}_c$ rather controversial!

pQCD:

A. Goritschnig, P. Kroll, W. Schweiger: Eur. Phys. J. A 42 (2009) 43

Hadronic models:

J. Haidenbauer and G. Krein: Phys. Lett. B 687 (2010) 314

A. Khodjamirian et al: Eur.Phys.J. A 48 (2012) 31

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Theoretical Situation

Outcome of theoretical descriptions of $p\bar{p} \longrightarrow D\overline{D}$ also controversial! pQCD: Hadronic models:

A. Goritschnig, B. Pire, W. Schweiger: Phys. Rev. D 87 (2013) 014017; D 88 (2013) 079903(E) J. Haidenbauer and G. Krein: arXiv: 1404.4174 [hep-ph]

A. Khodjamirian et al: Eur.Phys.J. A48 (2012) 31

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで

Theoretical Situation

Production mechanisms, assumptions and ingredients pQCD: Hadronic models:

- intrinsic charm in p neglected
- charm created perturbatively via $\mu\bar{\mu} \rightarrow c\bar{c}$
- \blacktriangleright Λ_c and D LC-wfs strongly peaked at $x_0 = m_c / m_{H_c}$
- \triangleright $p \rightarrow \Lambda_c$ transition GPDs and $p \rightarrow D$ TDAs unknown \Rightarrow modelling
- valid well above production threshold (ξ small)

- Hadron (Reggeon) exchange D D Λ_c, Σ_c \overline{N} N
- charm created non-perturbatively via $H_c^{(*)}$ (Regge) exchange
- intrinsic charm in p crucial
- ► $B_c p M_c^{(*)}$ -couplings unknown \Rightarrow $SU(4)_{f}$ -relations, LC sum rules
- initial and final state interaction (partly) taken into account
- vertex form factors not uniquely determined
- valid from production threshold on valid fr

Features of the Handbag Mechanism

Analysis of soft hadronic matrix element

 $\Rightarrow 8 \ p \rightarrow \Lambda_c \text{ transition GPDs } H, \ E, \ \tilde{H}, \ \tilde{E}, \ H_T, \ E_T, \ \tilde{H}_T, \ \tilde{E}_T$

Peaking approximation (x
_i → x₀ in hard-scattering amplitude)
 ⇒ x
-integrals over GPDS ⇒ 8 transition form factors

$$\int \frac{d\bar{x}_{1}}{\sqrt{\bar{x}_{1}^{2}-\xi^{2}}} \mathcal{H}_{\mu^{'}\mu}^{cu} = \bar{u}\left(p^{'},\mu^{'}\right) \left[R_{V}\left(\xi,t\right)\gamma^{+} + R_{T}\left(\xi,t\right)\frac{i\sigma^{+\nu}\Delta_{\nu}}{M+m}\right] u\left(p,\mu\right)$$

 $H, \ E \rightarrow R_V, \ R_T, \ \tilde{H}, \ \tilde{E} \rightarrow R_A, \ R_P, \ H_T, \ \tilde{H}_T, \ E_T, \ \tilde{E}_T \rightarrow S_T, \ S_S, \ S_{V1}, \ S_{V2}$

- ► Suppression of FFs which require quark orbital angular momentum $\Rightarrow |R_V|, |R_A|, |S_T| >> |R_T|, |R_P|, |S_{V1}|, |S_{V2}|$
- x̄ > ξ (DGLAP region) ⇒ overlap representation of GPDs and FFs in terms of valence-quark LC-wavefunctions feasible
- s-wave wave functions $\rightarrow R_V \approx R_A \approx S_T$

Features of the Handbag Mechanism

Spin Correlation Parameters

Single polarization observables vanish, but non-vanishing correlators:

- initial spin correlations: A_{ij}
- polarization transfer $p \rightarrow \Lambda_c$: D_{ij}

- ▶ final spin correlations: C_{ij}
- polarization correlation
 between p and Λ_c: K_{ij}

with i, j = L (helicity), N (normal to scatt. plane) and S (sideways direction, within scattering plane but \perp to momentum).

If $\mu_{\Lambda_c}=\mu_c \ \Rightarrow \ R_V=R_A=S_T$, then

 $\mathcal{O}\left(p \bar{p}
ightarrow \Lambda_c \bar{\Lambda}_c
ight) = \mathcal{O}\left(u \bar{u}
ightarrow c \bar{c}
ight),$

which is independent of model for baryon wave functions!

Extension of the Handbag Mechanism

Intrinsic (non-perturbative) charm in p

- Requires (at least) $|uudc\bar{c} >$ Fock component in p
- Is c-quark distribution in p peaked at small x (typical for light sea quarks), or concentrated at larger x (typical for LC-wf models)?
- ► In addition to DGLAP region also the ERBL region (|x| < |ξ|) may become important</p>

 Knowledge on intrinsic (non-perturbative) charm in p still poor J. Pumplin, H.L. Lai and W.K. Tung: Phys. Rev. D75 (2007) 054029
 T.J. Hobbs, J.T. Londergan and W. Melnitchouk: Phys. Rev. D89 (2014) 074008

Conclusions

- ▶ pQCD, i.e. generalized parton picture, applied to $p\bar{p} \rightarrow \Lambda_c \overline{\Lambda}_c$ and $p\bar{p} \rightarrow D^0 \overline{D^0}$ (*p* treated as uS[ud] state)
- Occurring GPDs and TDAs modeled by overlap of (valence Fock state) LC wave functions
- ▶ Predictions for integrated $p\bar{p} \rightarrow \Lambda_c \bar{\Lambda}_c$ and $p\bar{p} \rightarrow D^0 \overline{D}^0$ cross sections between 1 and 10 nb
- ▶ pQCD provides characteristic behavior of spin correlations for $p\bar{p} \rightarrow \Lambda_c \bar{\Lambda}_c \Rightarrow c$ -quark spin directly accessible via Λ_c spin?
- Integrated cross sections from pQCD 1-3 orders of magnitude smaller than from hadrodynamical models
- Hadrodynamical models require (non-perturbative) intrinsic charm in proton
- Experiment in favor of hadrodynamical models
 intrinsic charm in p has to be considered
 important information about c-quark distribution in p
- Intrinsic charm in proton can be accommodated within generalized parton picture, but requires additional modeling and has not yet been attempted

$p \bar{p} \longrightarrow \Lambda_c \bar{\Lambda}_c$ within the Generalized Parton Picture Baryon Kinematics

Average 4-momentum: $\bar{p} = \frac{1}{2} \left(p + p' \right) \Rightarrow \bar{\mathbf{p}}$ parallel to \mathbf{e}_z

Skewness parameter:

Symmetric CM frame

4-momenta in terms of LC-components:

$$\begin{split} \rho &= \left[\left(1 + \xi \right) \bar{\rho}^{+}, \frac{m^{2} + \mathbf{\Delta}_{\perp}^{2}/4}{2\left(1 + \xi \right) \bar{\rho}^{+}}, -\frac{\mathbf{\Delta}_{\perp}}{2} \right] \\ \rho' &= \left[\left(1 - \xi \right) \bar{\rho}^{+}, \frac{M^{2} + \mathbf{\Delta}_{\perp}^{2}/4}{2\left(1 - \xi \right) \bar{\rho}^{+}}, \frac{\mathbf{\Delta}_{\perp}}{2} \right] \\ q^{(\prime)} &= \left[p^{(\prime)-}, p^{(\prime)+}, -\mathbf{p}_{\perp}^{(\prime)} \right] \end{split}$$

4-momentum transfer $\Delta = p^{'} - p = q - q^{'}$ $= k_1' - k_1 = k_2 - k_2'$

$$\xi = \frac{p^+ - p'^+}{p^+ + p'^+} = -\frac{\Delta^+}{2\bar{p}^+} \,.$$

$$(a^+, a^-, a_\perp)$$
 with $a^\pm = (a^0 \pm a^3)/\sqrt{2}$ and $a_\mu b^\mu = a^+ b^- + a^- b^+ - \mathbf{a}_\perp \mathbf{b}_\perp$.

$p \bar{p} \longrightarrow \Lambda_c \bar{\Lambda}_c$ within the Generalized Parton Picture Parton Kinematics

Momenta of active partons

$$\begin{split} k_1 &= \left[x_1 \boldsymbol{p}^+, k_1^-, \mathbf{k}_{1\perp} \right] \\ k_1' &= \left[x_1' \boldsymbol{p}'^+, k_1'^-, \mathbf{k}_{1\perp}' \right] \\ k_2 &= \left[k_2^+, x_2 \boldsymbol{q}^-, \mathbf{k}_{1\perp} \right] \\ k_2' &= \left[k_2'^+, x_2' \boldsymbol{q}'^-, \mathbf{k}_{2\perp}' \right] \end{split}$$

Average momentum fractions \bar{x}_i :

$$ar{x}_1 = rac{k_1^+ + k_1'^+}{p^+ + p'^+}\,, \quad ar{x}_2 = rac{k_2^- + k_2'^-}{q^- + q'^-}$$

Relation to individual parton momentum fractions $x_i^{(\prime)}$:

$$x_1 = \frac{\bar{x}_1 + \xi}{1 + \xi}, \quad x_1' = \frac{\bar{x}_1 - \xi}{1 - \xi}, \quad x_2 = \frac{\bar{x}_2 - \xi}{1 + \xi}, \quad x_2' = \frac{\bar{x}_2 + \xi}{1 - \xi}$$

▲□ > ▲□ > ▲ 三 > ▲ 三 > ● ④ < ④

Modeling Generalized Parton Distributions

Transition Form Factors

$$ho \neq 0 \implies R_{V/A} = S_T \mp \frac{1}{2}\Delta R$$

($ho = 2 \implies \approx 10\%$ probability to find *c* with opposite helicity)

Scaled form factor $t'S_T$ [GeV²] with $t' = t - t_0$ at s = 30GeV².

- solid black: $f = f_{KK}$
- dashed blue:

$$f = f_{BB}$$

• dotted red: $(1/\sqrt{x_0^2 - \xi^2}) \int d\bar{x}_1$ over GPDs

 $(a_p = a_{\Lambda} = 0.75 \text{ GeV}^{-1}, N_p = 160.5 \text{ GeV}^{-2}, N_{\Lambda} = 2117/3477 \text{GeV}^{-2} (\text{KK/BB}))$