News from the Cluster-Jet Target

Ann-Katrin Hergemöller

Westfälische Wilhelms-Universität Münster, Institut für Kernphysik PANDA Meeting Darmstadt, June 10th 2014

- Automatic lifting system
- $\rightarrow\,$ Last few centimetres per hand wheel

- Automatic lifting system
- $\rightarrow\,$ Last few centimetres per hand wheel
 - Safety arrangements
- $\rightarrow\,$ End switches prevent any action while frame is locked

- Automatic lifting system
- $\rightarrow\,$ Last few centimetres per hand wheel
 - Safety arrangements
- $\rightarrow\,$ End switches prevent any action while frame is locked
 - Mounting points to the magnet
- \rightarrow Adjustable in all directions

Spherical Joint

Laval nozzle

Skimmer/Collimator chamber

- $\bullet\,$ Skimmer and collimator installed on xy-table \Rightarrow position adjustable
- Adjustment via two stepper motor devices
- Electrical installation ongoing

Skimmer & Collimator chamber - Camera ports

- Two camera ports on opposite sites
- Different objective lenses offer possibility to see:
 - Nozzle, beam and skimmer (f = 28 mm)
 - Detailed view of beam and skimmer tip $(f = 100 \,\mathrm{mm})$

$$f = 28 \,\mathrm{mm}$$

 $f = 100 \,\mathrm{mm}$

Vertical Setup

- Setup of cluster source in full PANDA geometry
- \Rightarrow Vertical setup
- $\Rightarrow 2.1\,m \text{ between cluster} \\ \text{source and scattering} \\ \text{chamber} \\$

Transition Vacuum Chamber

• Separates cluster target vacuum from HESR/PANDA vacuum

Transition Vacuum Chamber

 Offers camera ports for online cluster beam position and thickness monitoring

Measurement principle at MCT1S target

Gas system and gas control

Gas system and gas control

 \bullet Different modules for H_2 and N_2 systems

 H_2

Gas system and gas control

 \bullet Different modules for H_2 and N_2 systems

 H_2

 N_2

Gas system and gas control

• Installation at target support frame

Installation of further components Scattering Chamber & Beam Dump

- Setup of a scattering chamber including a scanning rod system
- Installation of a provisional beam dump
- ⇒ Test of cluster beam properties at PANDA interaction point in 2014

Setup of the cluster target \longrightarrow Next steps in 2014

- Final mounting of skimmer/collimator xy-tables and electrical installation
- Integration of snap connectors & transition vacuum chamber
- \Rightarrow Final Setup of the cluster source
 - Setup of the onboard gas system
 - Installation of the final pumping station in the new laboratory
 - \Rightarrow Integration with the cluster source
 - Installation of vertical beam pipes
 - Setup of scattering chamber and beam dump
 - Setup of final electronic rack & (temporary) slow control system for test operation

Setup of the cluster target \longrightarrow Implementing & Tests

- Tests of the vacuum conditions
- Test of mounting system
- Test of the slow control requirements
- Gas supply requirement tests
- Investigation of the target thickness
- Determination of the best settings of skimmer, collimator and spherical joint
- Long term beam stability tests
- Test of different Laval nozzles

Further Studies Mass Measurements with MCPs

- Mass measurements at the target prototype (E. Köhler)
- Cluster beam ionised by an e-gun
- Clusters are stopped by a retardation field

Further Studies

Mass Measurements with MCPs

- Measurement of transmission spectra
- Stopping of light clusters successful (retardation field $\leq 4 \, \rm kV$)
- Cluster mass described by log normal distribution
- $\bullet\,$ Measurements between 50 80 K, 7 12 ${\rm bar} \Rightarrow 10^{5}\,{\rm atoms}$
- Lower temperatures lead to higher masses

Status of the Cluster-Jet Target for PANDA

- Design and construction of complete cluster target ongoing
 - Cluster source integrated in support frame
 - Skimmer/collimator xy-tables ready for mounting
 - Setup of gas system ongoing
 - Construction of transition vacuum chamber
 - Construction of scattering chamber and beam dump
- \Rightarrow Implementing and tests

Further Studies

- Investigations on the cluster mass with MCP's
- Determination of the cluster size by Mie-scattering

Snap Connectors

Snap Connectors

