In-medium spectral functions and dilepton production at HADES / CBM within a coarse-graining approach

Stephan Endres

(in collab. with M. Bleicher, H. van Hees, J. Weil)

Frankfurt Institute for Advanced Studies ITP Uni Frankfurt

CBM Physics Symposium - GSI Darmstadt April 9th, 2014

- Introduction
- 2 Transport Calculations and their Limitations
- 3 Coarse Grained Transport Aproach
- 4 Results
- Outlook

Why Dileptons (at CBM)...?

- Dileptons represent a clean and penetrating probe of hot and dense nuclear matter
- Reflect the whole dynamics of a collision → Correct description of dynamics essential!
- Aim of studies:
 - In-medium modification of vector meson properties
 Hadronic many-body effects
 Baryon vs. meson-driven modifications
 Vector Meson Dominance
 - Chiral symmetry restoration

Ultra-relativistic Quantum Molecular Dynamics

- Hadronic non-equilibrium transport approach
- Includes all baryons and mesons with masses up to 2.2 GeV
- Two processes for resonance production in UrQMD (at low energies)
 - Collisions (e.g. $\pi\pi \to \rho$)
 - Higher resonance decays (e.g. $N^* \rightarrow N + \rho$)
- Resonances either decay after a certain time or are absorbed in another collision (e.g. $\rho + N \rightarrow N_{1520}^*$)
- String excitation possible above $\sqrt{s} = 3.2 \text{ GeV}$

Resonance	Mass	Width
N_{1440}^*	1.440	350
N_{1520}^*	1.515	120
N* 1535	1.550	140
N_{1650}^{*}	1.645	160
N_{1675}^*	1.675	140
N_{1690}^{*}	1.680	140
N* 1700	1.730	150
N_{1710}^{*}	1.710	500
N_{1720}^*	1.720	550
N_{1900}^*	1.850	350
N_{1990}^*	1.950	500
N_{2080}^*	2.000	550
N_{2190}^*	2.150	470
N_{2220}^*	2.220	550
N_{2250}^{*}	2.250	470
Δ_{1232}	1.232	115
Δ_{1600}^{*}	1.700	350
Δ_{1620}^{*}	1.675	160
Δ_{1700}^{*}	1.750	350
Δ_{1900}^{*}	1.840	260
Δ_{1905}^{*}	1.880	350
Δ_{1910}^{*}	1.900	250
Δ_{1920}^{*}	1.920	200
Δ_{1930}^{*}	1.970	350
Δ_{1950}^{*}	1.990	350

Resonance	Mass	Width	$N\pi$	$N\eta$	$N\omega$	$N\varrho$	$N\pi\pi$	$\Delta_{1232}\pi$	$N_{1440}^*\pi$	ΛK	ΣK	f_0N	$a_0 N$
N* 1440	1.440	350	0.65				0.10	0.25					
N_{1520}^*	1.515	120	0.60			0.15	0.05	0.20					
N_{1535}^{*}	1.550	140	0.60	0.30			0.05		0.05				
N_{1650}^*	1.645	160	0.60	0.06		0.06	0.04	0.10	0.05	0.07	0.02		
N_{1675}^{*}	1.675	140	0.40					0.55	0.05				
N_{1680}^*	1.680	140	0.60			0.10	0.10	0.15	0.05				
N_{1700}^*	1.730	150	0.05			0.20	0.30	0.40	0.05				
N ₁₇₁₀	1.710	500	0.16	0.15		0.05	0.21	0.20	0.10	0.10	0.03		
N_{1720}^*	1.720	550	0.10			0.73	0.05			0.10	0.02		
N_{1900}^*	1.850	350	0.30	0.14	0.39	0.15				0.02			
N*	1.950	500	0.12			0.43	0.19	0.14	0.05	0.03		0.04	
N* 2080	2.000	550	0.42	0.04	0.15	0.12	0.05	0.10		0.12			
N** 2190	2.150	470	0.29			0.24	0.10	0.15	0.05	0.12			
N**	2.220	550	0.29		0.05	0.22	0.17	0.20		0.12			
N** 2250	2.250	470	0.18			0.25	0.20	0.20	0.05	0.12			
Δ_{1232}	1.232	115	1.00										
Δ_{1600}^{+}	1.700	350	0.10					0.65	0.25				
Δ_{1620}^{*}	1.675	160	0.15			0.05		0.65	0.15				
Δ_{1700}^{+}	1.750	350	0.20			0.25		0.55					
Δ_{1900}^{*}	1.840	260	0.25			0.25		0.25	0.25				
Δ^{*}_{1905}	1.880	350	0.18			0.80		0.02					
Δ_{1910}^{*}	1.900	250	0.30			0.10		0.35	0.25				
Δ_{1920}^{*}	1.920	200	0.27					0.40	0.30	0.03			
Δ^{*}_{1930}	1.970	350	0.15			0.22		0.20	0.28	0.15			
Δ^*_{1950}	1.990	350	0.38			0.08		0.20	0.18	0.12			0.04

- Which **resonances** do I have to include?
- Which resonance is produced with which probability?
- What is the actual **branching ratio** (e.g. to the ρ)?
- \rightarrow Many parameters one can "play" with, as they are not fixed...

Example: Exclusive Resonance Cross-Sections

SIS energies perfect to study baryon resonance effects

Transport Results

Introduction

 There has been a lot of improvement, especially concerning the exact comparison and adjustment of the many parameters, cross-sections, branching ratios (→ GiBUU results by Janus)

However, this is difficult and one has to be careful...

Results

Transport Results

- We see an excess in heavy-ion collisions (e.g. Ar+KCl @ 1.76 AGeV) not yet described by the model
- Is NN and πN bremsstrahlung p+n interactions relevant? (How to avoid double counting?)
- Do we see in-medium effects?

Outlook

Transport Results for Elementary Reactions at CBM

- At CBM energies, the resonance model is complemented by string excitation
- ϕ produciton probably underestimated (known issue, due to production via strings)
- Δ Dalitz parametrization gives unphysically huge contribution at high masses \rightarrow Mass distribution of Deltas crucial, high mass resonances dominate e^+e^- emission

Challenges

- Cross-sections not implemented explicitly but intermediate baryonic resonances are used
- Some cross-sections are even unmeasured or unmeasurable (especially for ρ and Δ lack of data)
- Consistency of description when going from resonances to strings?
- " Δ crisis" \rightarrow How to describe e^+e^- emission? Dalitz decay? VMD via ρ ? What about the form factor? Which / how to dertermine?
- General difficulties of the transport approach at high density:
 - Off-shell effects
 - Multi-particle collisions
- ⇒ How can we avoid these problems?

Results

Outlook

Introduction

We take an ensemble of UrQMD events and span a grid of

- For those cells we determine baryon and energy density and use Eckart's definition to determine the rest frame properties
 - ightarrow use EoS to calculate T and μ_B

small space time cells.

- For the Rapp Spectral function, we also extract pion and kaon chemical potential via simple Boltzmann approximation
- An equation of state for a free hadron gas without any phase transition is used [D. Zschiesche et al., Phys. Lett. B547, 7 (2002)]
- To account for QGP emission, we make the simplifying assumption that cells with T above 175 MeV contribute only to the Quark-Gluon emission

- Lepton pair emission is calculated for each cell of 4-dim. grid, using thermal equilibrium rates per four-volume and four-momentum from a bath at T and μ_B .
- The ρ dilepton emission (similar for ω , ϕ) of each cell is accordingly calculated using the expression

[R. Rapp, J. Wambach, Adv. Nucl. Phys. 25, 1 (2000)]

$$\frac{\mathsf{d}^8\mathsf{N}_{\rho\to\mathsf{II}}}{\mathsf{d}^4\mathsf{x}\mathsf{d}^4\mathsf{q}} = -\frac{\alpha^2\mathsf{m}_\rho^4}{\pi^3\mathsf{g}_\rho^2}\frac{\mathsf{L}(\mathsf{M}^2)}{\mathsf{M}^2}\mathsf{f}_\mathsf{B}(\mathsf{q}_0;\mathsf{T})\mathsf{Im}\mathsf{D}_\rho(\mathsf{M},\mathsf{q};\mathsf{T},\mu_\mathsf{B})$$

• The 4π lepton pair production can be determined from the electromagnetic spectral function extracted in e^+e^- annihilation [Z. Huang, Phys. Lett. B361, 131 (1995)]

$$\frac{d^{8}N_{4\pi\to II}}{d^{4}xd^{4}a} = \frac{4\alpha^{2}}{(2\pi)^{2}}e^{-q_{0}/T}\frac{M^{2}}{16\pi^{3}\alpha^{2}}\sigma(e^{+}e^{-}\to 4\pi)$$

QGP contribution is evaluated as qq annihilation with HTL improvement [J. Cleymans et al., Phys. Rev. D35, 2153 (1987)]

Eletsky Spectral Function

Resonance	(GeV)	(GeV)	$(\rho N \text{ or } \rho \pi)$		
N(1700)	1.737	0.249	0.13		
N(1720)	1.717	0.383	0.87		
N(1900)	1.879	0.498	0.44		
N(2000)	1.903	0.494	0.60		
N(2080)	1.804	0.447	0.26		
N(2090)	1.928	0.414	0.49		
N(2100)	1.885	0.113	0.27		
N(2190)	2.127	0.547	0.29		
$\Delta(1700)$	1.762	0.599	0.08		
$\Delta(1900)$	1.920	0.263	0.38		
$\Delta(1905)$	1.881	0.327	0.86		
$\Delta(1940)$	2.057	0.460	0.35		
$\Delta(2000)$	1.752	0.251	0.22		
$\phi(1020)$	1.020	0.0045	0.13		
$h_1(1170)$	1.170	0.36	1		
$a_1(1260)$	1.230	0.40	0.68		
$\pi(1300)$	1.300	0.40	0.32		
$a_2(1320)$	1.318	0.107	0.70		
$\omega(1420)$	1.419	0.174	1		

 \bullet In-medium self energies of the ρ

$$\Sigma_
ho = \Sigma^0 + \Sigma^{
ho\pi} + \Sigma^{
ho\mathsf{N}}$$

were calculated using empirical scattering amplitudes from **resonance dominance**

[V. L. Eletsky et al., Phys. Rev. C64, 035303 (2001)]

- For ρ N scattering N^* and Δ^* resonances from Manley and Saleski
- Additional inclusion of the Δ₁₂₃₂ and the N₁₅₂₀ subthreshold resonances
 ⇒ Important, as they significantly contribute!

Introduction

• Includes finite temperature propagators of ω , ρ and ϕ meson

[R. Rapp, J. Wambach, Eur.Phys.J. A6, 415-420 (1999)]

 \bullet Medium modifications of the ρ propegator

$$\mathsf{D}_{
ho} \propto rac{1}{\mathsf{M}^2 - \mathsf{m}_{
ho}^2 - \Sigma^{
ho\pi\pi} - \Sigma^{
ho\mathsf{M}} - \Sigma^{
ho\mathsf{B}}}$$

include interactions with pion cloud with hadrons $(\Sigma^{\rho\pi\pi})$ and direct scatterings off mesons and baryons $(\Sigma^{\rho M}, \Sigma^{\rho B})$

• Pion cloud modification approximated by using effective nucleon density $\rho_{\rm eff} = \rho_{\rm N} + \rho_{\bar{\rm N}} + 0.5(\rho_{R^*+\bar{R}^*})$

Comparison of Rapp & Eletsky SFs

- Qualitative agreement between Rapp and Eletsky approach in spite of different ansatz (many-body calculation vs. empirical approach)
- However, significant difference is the stronger broadening and additional low-mass strength of the Rapp approach

Results

- Previous calculations were done with a fireball model
 [H. van Hees, R. Rapp, Nucl. Phys. A806, 339 (2008)]
- The zone of hot and dense matter is described by an isentropic expanding cylindrical volume

$$V_{\mathrm{FB}}(t) = \pi \left(r_{\perp,0} + \frac{1}{2} a_{\perp} t^2 \right)^2 \left(z_0 + v_{z,0} t + \frac{1}{2} a_z t^2 \right)$$

- *Problem*: How to choose parameters? Is it a plausible description or a too simple picture?
- ⇒ Make calculations with better constrained input...

Introduction

UrQMD Energy and Baryon Density as Input...

- The UrQMD input we use gives a more realistic and nuanced picture of the collision evolution (here e.g. for ln+ln @ 158 AGeV)
- Energy and baryon density are by no means homogeneous in the whole fireball ⇒ Different expansion dynamics might lead to significantly differing dilepton spectra

Introduction

Temperature and Chemical Potential from Coarse Graining

- For a central cell in an Au+Au collision @ 1.25 AGeV we get a high μ_B up to 1000 MeV and a maximum temperature of \approx 100 MeV.
- With increasing beam energy, temperature rises and baryon chemical potential decreases → Less baryon dominated at higher energies

Au+Au @ 3.5 AGeV

- The UrQMD ρ contribution as well as the coarse-graining results for the vacuum and in-medium spectral functions are shown
- In-medium ρ "melts" away at the pole mass while it becomes dominant at lower masses

Ar + KCl @ 1.76 AGeV

- Comparison of spectral functions to HADES data shows that the in-medium ρ is dominated by the Δ_{1232} contribution, as shapes agree at lowest masses
- Still below the data for intermediate mass region, Rapp spectral function gives a little more contribution

- Expect an even more significant excess due to baryon driven medium effects compared to Ar+KCl @ 1.76 AGeV
- HADES data hopefully help constraining effects...

Introduction

Looking at NA60 - Rapp Spectral Function

- In-medium ρ contribution to dimuon excess was calculated with the Rapp spectral function for the Hadron Gas EoS
- 4π and QGP contribution dominate especially above 1 GeV, however, a significant part of the excess at low masses also stems from the QGP
- ⇒ Good overall agreement, but underestimation of the low-mass tail of the excess dimuons

Comparison of Spectral Functions

- No big differences between the approaches visible, with none of the spectral functions the yield is completely described
- Caveat: The parameters which go into the spectral funtion are different (chemical potential vs. effective baryon density)

Quark Hadron Duality?

- Compare dilepton yields for pure Hadron Gas (left) and HG with QGP emission (right) for temperatures above 175 MeV
- \bullet Below 1 GeV, the QGP and ρ contributions are completely complementary, at higher masses a QGP contribution is clearly necessary

Au+Au @ 8 AGeV

- Also for Au+Au @ 8 AGeV a significant in-medium modification of the ρ spectral fuction appears
- Dilepton yield is enhanced at low masses
- Temperature in hottest cells around 175 MeV, causing already a small QGP emission

Au+Au @ 8 AGeV - Comparison of Spectral Functions

- Significant difference between the spectal shapes of the different approaches
- However, effects might be less obvious when looking at the total dilepton yield
- ⇒ **High-precision measurement** will be crucial to learn about the spectral functions!

Au+Au @ 25 AGeV

- At 25 AGeV the invariant mass spectrum does not differ qualtitatively from the 8 AGeV result
- However, at large masses we get now a significant contribution from QGP emission
- It might be very interesting at CBM to look especially at the region for M > 1 GeV (detailed study necessary)

Outlook

Outlook

- Role of equation of state on dielepton spectra?
- Continue work on dilepton calculations with hybrid model (transport + hydro)
- Using different input from transport (e.g. from GiBUU)

Outlook

Summary

- New approach to combine realistic transport caluclations with in-medium modified spectral functions for vector mesons
- Non-equilibrium treatment highly non-trivial ⇒ Use
 equilibrium rates for a coarse-grained transport dynamics
- Explanation of dilepton measurements is still a challenge for theory ⇒ Need for more experimental input!
- CBM will be possible to explore physics in an up-to-now mostly uninvestigated energy range → Test and constrain models
- ullet Not only low-mass regime but also ullet > 1 GeV might be worth being intensively studied
- High precision data necessary to constrain model calculations, that still have large uncertainties
- Further work in progress...!