

Institut für Theoretische Physik I

Strange antibaryons and directed flow from \sqrt{s} = 4 - 200 GeV

Wolfgang Cassing

CBM Physics Workshop 09.04.2014

Lattice QCD <--> transport <--> experiment

hunting for the softest point in the equation of state

Strange baryons at low energies

Fig. 3.13 a.) Centrality dependence of Ξ and $\Lambda + \Sigma$ yields, as well as $\Xi/(\Lambda + \Sigma)$ ratio for 6 A GeV Au+Au collisions in comparison to RQMD calculations, b.) Excitation function of $\Xi/(\Lambda + \Sigma)$ ratio based on E810, E895, NA49 and RHIC data (from [115]).

have been a challenge since long!

Au+Au data at 11.6 A GeV suggest

Fig. 3.14 Measurements of the $\overline{\Lambda}/\overline{p}$ ratio at mid-rapidity and low p_T as a function of impact parameter compared to UrQMD calculations (from [109]).

strong enhancement of antistrange quarks with increasing centrality?

Parton Hadron String Dynamics

I. From hadrons to QGP:

- Initial A+A collisions:
 - string formation in primary NN collisions
 - strings decay to pre-hadrons (B baryons, m mesons)
- Formation of QGP stage by dissolution of pre-hadrons into massive colored quarks + mean-field energy based on the Dynamical Quasi-Particle Model (DQPM) which defines quark spectral functions, masses $M_q(\varepsilon)$ and widths $\Gamma_q(\varepsilon)$ + mean-field potential U_q at given ε – local energy density (related by lQCD EoS to *T* - temperature in the local cell)

II. Partonic phase - QGP:

- quarks and gluons (= ,dynamical quasiparticles') with off-shell spectral functions (width, mass) defined by the DQPM
- in self-generated mean-field potential for quarks and gluons Uq, Ug from the DQPM
- EoS of partonic phase: ,crossover' from lattice QCD (fitted by DQPM)
- (quasi-) elastic and inelastic parton-parton interactions: using the effective cross sections from the DQPM

III. <u>Hadronization</u>: based on DQPM

- massive, off-shell (anti-)quarks with broad spectral functions hadronize to off-shell mesons and baryons or color neutral excited states -, strings' (strings act as ,doorway states' for hadrons)
- IV. <u>Hadronic phase:</u> hadron-string interactions off-shell HSD

 $\varepsilon > \varepsilon_{\text{critical}}$

Antibaryons in HSD/PHSD

W. Cassing / Nuclear Physics A 700 (2002) 618-646

Annihilation vs. regeneration by detailed balance!

$$\begin{split} \frac{\mathrm{d}N_{\mathrm{coll}}[m \; \mathrm{mesons} \to B \, \overline{B}]}{\mathrm{d}t \; \mathrm{d}V} \\ &= \sum_{i,j} \sum_{\lambda_m} \left(\frac{1}{(2\pi)^3}\right)^m \int \left(\prod_{k=3}^{m+2} \frac{\mathrm{d}^3 p_k}{2E_k}\right) W_{2,m}(\sqrt{s}; i, j, \lambda_m) \\ &\qquad \times R_2 \left(P^\mu = \sum_{k=3}^{m+2} p_k^\mu; M_1, M_2\right) \prod_{k=3}^{m+2} f_k(x, p_k), \end{split}$$

Previous results from HSD

show strong impact of the multi-meson channels at top SPS energies in HSD!

Strange and antistrange baryons at 160 A GeV

What about lower energies?

The trend with increasing centrality is enhanced at lower energies!

Anisotropy coefficients

Non central Au+Au collisions:

☐ interaction between constituents leads to a pressure gradient

=> spatial asymmetry is converted to an asymmetry in

momentum space => collective flow

$$\frac{dN}{d\varphi} \propto \left(1 + 2\sum_{n=1}^{+\infty} v_n \cos\left[n(\varphi - \psi_n)\right]\right)$$
$$v_n = \left\langle\cos n(\varphi - \psi_n)\right\rangle, \quad n = 1, 2, 3...,$$

 v_1 : directed flow

 v_2 : elliptic flow

 v_3 : triangular flow.....

$$v_1 = \left\langle \frac{p_x}{p_T} \right\rangle, \quad v_2 = \left\langle \frac{p_x^2 - p_y^2}{p_x^2 + p_y^2} \right\rangle$$

"Antiflow" $v_1 < 0$ "third flow component"

Direct flow and Quark-Gluon Plasma

$$\langle p_x/N \rangle^{dir} = \frac{1}{N} \int_{-y_{CM}}^{y_{CM}} dy \ \langle p_x/N \rangle(y) \ \frac{dN}{dy} \ \text{sgn}(y)$$

D.H. Rischke, Y. Pursun, J.A. Maruhn, H. Stoecker, W. Greiner, Heavy Ion Phys. 1, 309 (1995)

Antiflow of nucleons at the softest point of the EoS

EoS is softened either by a phase transition to the QGP or by the creation of resonances and string-like excitations

Collective flow signals of the Quark-Gluon Plasma

H. Stöcker, Nucl. Phys. A 750, 121 (2005)

- Early hydro calculation predicted the "softest point" at E_{lab}= 8 AGeV
- A linear extrapolation of the data (arrow) suggests a collapse of flow at E_{lab} = 30 AGeV

3-Fluid Dynamics

Baryon Stopping

JINR. 24.08.10

Model

curvature

Crossover

Summary

Produced particles populate mid-rapidity ⇒ fireball fluid

momentum along beam

Target-like fluid:

$$\partial_{\mu} J_{t}^{\mu} = 0$$

$$\partial_{\mu} T_t^{\mu
u} = -F_{tp}^{
u} + F_{ft}^{
u}$$

Leading particles carry bar, charge

exchange/emission

Projectile-like fluid: $\partial_{\mu} J_{D}^{\mu} = 0$,

$$\partial_{\mu} J_{p}^{\mu} = 0$$
,

$$\partial_{\mu}T_{p}^{\mu
u}=-F_{pt}^{
u}+F_{fp}^{
u}$$

Fireball fluid:

$$J_f^{\mu}=0$$
,

$$J_f^\mu = 0, \qquad \qquad \partial_\mu T_f^{\mu
u} = F_{
ho t}^
u + F_{t
ho}^
u - F_{f
ho}^
u - F_{ft}^
u$$

Baryon-free fluid

Source term Exchange

The source term is delayed due to a formation time $\tau \sim 1$ fm/c

Total energy-momentum conservation:

$$\partial_{\mu}(T_{p}^{\mu\nu}+T_{t}^{\mu\nu}+T_{f}^{\mu\nu})=0$$

HSD/PHSD vs 3FD: multiplicities at midrapidity

- Both transport and hydro approaches work reasonably fine
- Deviation from the data appear at $\sqrt{s} > 20$ GeV for the hadronic cases (HSD)

PHSD: snapshot of the reaction plane

- Color scale: baryon number density
- Black levels: parton density 0.6 and 0.01 fm⁻³
- Red arrows: local velocity of baryon matter

PHSD: time evolution of $\langle p_x \rangle$ at y = +0.25

- Averaged over ~ 80 000 collisions
- Directed flow v₁ is formed at an early stage of the nuclear interaction.
- Baryons finally reach a positive v₁ while mesons turn to a negative value of v₁

Directed flow from PHSD and HSD

- Both models HSD and PHSD reproduce the general trends of the recent STAR data
- Protons and pions are reasonably described by both models
- Antiprotons in PHSD are produced dominantly from hadronization at the highest energies
- PHSD and HSD coincide at lower energies => dominance of hadronic matter and hadronic reaction channels (absorption and recreation)

PHSD: Characteristic slopes of v₁(y)

The slope of v₁(y) at midrapidity:

$$F = \frac{dv_1}{dy} \bigcup_{y=0}^{\infty}$$

is used to characterize directed flow

- Fit $v_1(y) = Fy$ in the rapidity window -0.5 < y < 0.5
- Proton slopes are in qualitative agreement but overestimate STAR data at 5 < √s < 15 GeV; HSD is close to UrQMD
- PHSD/HSD works reasonable due to inclusion of inverse processes for antiproton annihilation
- Partonic phase clearly seen in the pion directed flow at higher energies!

Stability of the slopes

- Fluctuations of the experimentally determined event plane do not change the result.
- Addition of a cubic term to the fit $v_1(y) = Fy + Cy^3$ gives similar results

3FD: directed flow vs. EoS

- Description of the STAR v₁(y) is not very well and relatively worse than by PHSD
- Crossover EoS agrees better with the experimental data than the pure hadronic EoS

3FD: excitation function of v₁ slopes

- 3-Fluid Dynamic approach (3FD) gives reasonable results for proton and pion slopes of v₁ and fails at 7.7 GeV for antiprotons
- Discrepancies between 3FD model and STAR data are smaller in case of a crossover

3FD: comparison with 1F-hydro and hybrid models

- 3-Fluid Dynamic approach (3FD) gives reasonable results for proton and pion slopes of v₁ and fails at 7.7 GeV for antiprotons
- Discrepancies between 3FD model and STAR data are smaller in case of a crossover
- Recent hydrodynamical and hybrid (hydro+kinetic) results are shown for comparison

New thoughts about the phase diagram?

Matching the DQPM with the HRG

=> Softest point should be at higher baryon chemical potential!

Summary I – directed flow

- The microscopic Parton-Hadron-String-Dynamics (PHSD) transport approach reproduces the general trends in the $v_1(y)$ excitation functions in the energy range \sqrt{s} =7.7-39 GeV and leads to an almost quantitative agreement for protons, antiprotons and pions especially at higher energies. We don't see any "wiggle-like" structures as expected by early hydro calculations but see a softening of the EoS in the BES range.
- ➤ The PHSD results differ from those of HSD where no explicit partonic degrees of freedom are incorporated. A comparison of both microscopic models has provided detailed information on the effect of parton dynamics on the directed flow (especially for pions).
- ➤ Inclusion of antiproton annihilation into several mesons as well as the inverse processes in HSD/PHSD help to reproduce antiproton directed flow at lower energies.
- > 3-Fluid Dynamic approach (3FD) gives reasonable results for proton and pion slopes of v₁ but fails at 7.7 GeV for antiprotons
- Crossover transition agrees better with the experiment than the pure hadronic EoS

Summary II – multistrange antibaryons

- ➤ Inclusion of antiproton annihilation into several mesons as well as the inverse processes in HSD/PHSD help to reproduce antibaryon yields at lower energies.
- Enhancement of multi-strange antibaryons with increasing centrality and decreasing bombarding energy within PHSD relative to HSD.
- Indications for the softest point in the EoS at higher baryon chemical potential than assumed before!
- The heavy-ion dynamics close to the softest point is not well understood in all models! Strong parton-hadron reactions in the crossover or mixed phase?

CBM should find out!

PHSD group

FIAS & Frankfurt University
Elena Bratkovskaya
Rudy Marty
Hamza Berrehrah
Daniel Cabrera
Taesoo Song
Andrej Ilner

Giessen University
Wolfgang Cassing
Olena Linnyk
Volodya Konchakovski
Thorsten Steinert
Alessia Palmese

External Collaborations

Jörg Aichelin

Christoph Hartnack

Pol-Bernard Gossiaux

Vitalii Ozvenchuk

Texas A&M University: Che-Ming Ko

JINR, Dubna:

Viacheslav Toneev

Vadim Voronyuk

BITP, Kiev University: Mark Gorenstein

Barcelona University:

Laura Tolos

Angel Ramos

Backup

Physical Input

Baryon Stopping

JINR, 24.08.10

Model

Rapidity Density

Fit

Reduced curvature

Trajectorie

Crossover

Summary

Equation of State (EoS)

Hadronic EoS (H-EoS)

[Galitsky and Mishustin, Sov. J. Nucl. Phys. 29, 181 (1979)]

1st-order transition to QGP (2P-EoS)

[Khvorostukhin, Skokov, Redlich, Toneev, EPJ C48, 531 (2006)]

Phase transition ⇒ EoS softening (in dense baryon matter)

- Freeze-out energy-density: $\varepsilon_{frz} = 0.4 \text{ GeV/fm}^3$
- Friction: estimated and tuned
- Formation Time: $\tau = 2$ fm/c for H-EoS and $\tau = 0.33$ fm/c for 2P-EoS
- Coalescence coefficients for fragments

PHSD in the box

Note: the volume is divided into 9³ cells of size 1 fm³!

Transport coefficients

$$\eta = \frac{1}{T} \int d^3r \int_0^\infty dt \langle \pi^{xy}(\mathbf{0}, 0) \pi^{xy}(\mathbf{r}, t) \rangle,$$

Cross sections in PHSD

$$\pi^{xy}(\mathbf{r},t) \equiv T^{xy}(\mathbf{r},t) = \int \frac{d^3p}{(2\pi)^3} \frac{p^x p^y}{E} f(\mathbf{r},\mathbf{p};t)$$

Shear viscosity shows a minimum close to Tc!

Bulk viscosity

$$\begin{split} \zeta \; &= \; \frac{1}{T} \sum_a \int \frac{d^3p}{(2\pi)^3} \frac{\tau_a(E_a)}{E_a^2} f_a^{eq}(E_a/T) \\ & \times \; \left[\left(\frac{1}{3} - v_s^2 \right) |\mathbf{p}|^2 - v_s^2 \left(m_a^2 - T^2 \frac{dm_a^2}{dT^2} \right) \right]^2 \end{split}$$

in comparison to IQCD

shows a maximum close to Tc

bulk/shear versus temperature

pronounced maximum at Tc!

electric conductivity

relaxation time approach:

$$\frac{\sigma_0(T)}{T} \approx \frac{2}{9} \frac{e^2 n_q(T)}{M_q(T) \Gamma_q(T) T}$$