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Lattice QCD <--> transport <--> experiment
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hunting for the softest point in the equation of state



Strange baryons at low energies
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Fig. 3.13 a.) Centrality dependence of Z and A+X yields, as well as Z/(A+X") ratio for
i A GeV Au+Au collisions in comparison to RQMD calculations, h.f] FExcitation function
of Z/(A+X) ratio based on E810, E895, NA49 and RHIC data (from [115]).

have been a challenge since long !



Au+Au data at 11.6 A GeV suggest
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Fig. 3.14 Measurements of the Hﬁ ratio at mid-rapidity and low pr as a function of
impact parameter compared to UrQMD calculations {from [109]).

strong enhancement of antistrange quarks with increasing centrality ?
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Parton Hadron String Dynamics
I. From hadrons to QGP:

@ 99,9
§ s Initial A+A collisions: S (L Ly
3.;:: - string formation in primary NN collisions ® © o00ild
o - strings decay to pre-hadrons (B - baryons, m — mesons)
¥ # Formation of QGP stage by dissolution of pre-hadrons QGP phase:
into massive colored quarks + mean-field energy eE>€

critical

based on the Dynamical Quasi-Particle Model (DQPM)
which defines quark spectral functions, masses M,(€) and widths 7;(¢) 0
+ mean-field potential U, at given &-— local energy density
( related by 1QCD EoS to T - temperature in the local cell)

II. Partonic phase - QGP:

# quarks and gluons (= ,dynamical quasiparticles®)

with off-shell spectral functions (width, mass) defined by the DQPM
s in self-generated mean-field potential for quarks and gluons U, U, from the DQPM
# EoS of partonic phase: ,crossover® from lattice QCD (fitted by DQPM)
# (quasi-) elastic and inelastic parton-parton interactions:
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using the effective cross sections from the DQPM P eos . o8 &
&= e —
. . ~e ‘\(_‘_f:,‘lp ~
III. Hadronization: based on DQPM L

s massive, off-shell (anti-)quarks with broad spectral functions
hadronize to off-shell mesons and baryons or color neutral excited states -
,strings* (strings act as ,doorway states‘ for hadrons)

: I'V. Hadronic phase: hadron-string interactions — off-shell HSD




Antibaryons in HSD/PHSD
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Annihilation vs. regeneration by detailed balance !
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Previous results from HSD
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show strong impact of the multi-meson channels at top SPS energies in HSD !



Strange and antistrange baryons at 160 A GeV
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PHSD:

Slightly more A and

but much more Q2¢s

Antibaryons (r.h.s,) are

substantially enhanced !

Note:
present statistics
drastically need

improvement !
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What about lower energies ?
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The trend with increasing centrality is enhanced at lower energies !



Anisotropy coefficients

Non central Au+Au collisions :

O interaction between constituents leads to a pressure gradient
=> spatial asymmetry is converted to an asymmetry in
momentum space => collective flow

N i v, directed flow
o o (l B 22 v, COS [n(tp -y, )]) v,. elliptic flow
v = v, triangular flow.....

Vo= <COS”((p_w”)>’ 7n=123., 2 .2
v_<p:r> vy = Py — Py

1 = — 3 -
prT Pz + v

[ PHSD: Au+Au (@ 11.5 GeV, b=6fm
10 [ baryon number density and velocity ¥

S
E o
-
_5:-
Directed flowv, >0 [ “Antiflow” v, < 0
-10F — 1 “third flow component”
-10 -5 0 5 10
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Direct flow and Quark—-Gluon Plasma
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D.H. Rischke, Y. Pursun, J.A. Maruhn, H. Stoecker, W. Greiner,

Heavy lon Phys. 1, 309 (1995)
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Antiflow of nucleons at the softest point of the EoS

Au+Au (8 AMeV)

0.5

[frn]

0.45

0.4

0.35

0.3

0.25

0.2

4 015

1 005

Z [frm]

200

' 150

> [MeV/e

dir

< Px

50 ¢

A1 fluid, no PT

. O 1 fluid, with PT
B© A, ® 3f (nounify), with PT
- @ 3f (unify), with PT

ELH.}') [AG@V]

EoS is softened either by a phase transition to the QGP
or by the creation of resonances and string-like excitations

J. Brachmann, S. Soff, A. Dumitru, Y. Stoecker, J.A. Maruhn, W. Greiner, L.V. Bravina, D.H. Rischke,

Phys. Rev. C61 (2000) 024909
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Collective flow signals of the Quark—Gluon Plasma

H. Stécker, Nucl. Phys. A 750, 121 (2005)
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3-Fluid Dynamics

Baryon - target projectile
Stopping 2
IR Produced particles 5 renan
S populate mid-rapidity S
= fireball fluid 2
)
L=

momentum along beam

. = 3. [T Hv o v v
Target-like fluid: Oudy = O Ty =—Fy + F
Leading particles carry bar. charge exchange/emission
- - . . . o uy Y
Projectile-like fluid:  0,J, =0, Oulp =—Fpr + Fpp
- =1. [T Ly ey v 174 I/
Baryon-free fluid Source term  Exchange
The source term is delayed due to a formation time = ~ 1 fm/c

Total energy-momentum conservation:
Ou(Tp" + T{" +T/")=0

Yu.B. Ivanov, V.N. Russkikh and V.D. Toneev, Phys. Rev. C73, 044904 (2006)



HSD/PHSD vs 3FD: multiplicities at midrapidity

3-Fluid Dynamics
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e Both transport and hydro approaches work reasonably fine

 Deviation from the data appear at Vs > 20 GeV for the hadronic cases (HSD)

A. Andronic, P. Braun-Munzinger and J. Stachel, Nucl. Phys. A772, 167 (2006) 15



PHSD: snapshot of the reaction plane
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e Color scale: baryon number density
o Black levels: parton density 0.6 and 0.01 fm3

o Red arrows: local velocity of baryon matter

16



PHSD: time evolution of <p > aty = +0.25
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o Averaged over ~ 80 000 collisions
o Directed flow v, is formed at an early stage of the nuclear interaction.

o Baryons finally reach a positive v, while mesons turn to a negative
value of v,
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Directed flow from PHSD and HSD

proton | antiproton | piont | @ STAR

0.02 ; ° ! + — PHSD

e Both models HSD and PHSD
reproduce the general trends of the
recent STAR data

e Protons and pions are reasonably
described by both models

e Antiprotons in PHSD
are produced dominantly
from hadronization
at the highest energies

e PHSD and HSD coincide
at lower energies =>
dominance of hadronic matter
and hadronic reaction channels
(absorption and recreation)
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STAR Collaboration, arXiv:1401.3043 18
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PHSD: Characteristic slopes of v, (y)
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o The slope of v,(y) at midrapidity:

dv,
F=—

. dy y=0
IS used to characterize directed flow

o Fitv,(y) = Fy in the rapidity window -0.5 <
y<0.5

o Proton slopes are in qualitative agreement
but overestimate STAR data
at5 < Vs <15 GeV;
HSD is close to UrQMD

o PHSD/HSD works reasonable due to
inclusion of inverse processes for
antiproton annihilation

e Partonic phase clearly seen in the pion
directed flow at higher energies!
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Stability of the slopes
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—— PHSD: v (v} =Fy
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e Fluctuations of the experimentally determined event plane do not
change the result.

o Addition of a cubic term to the fit v.(y) = Fy + Cy?® gives similar results
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.
3FD: directed flow vs. E0S
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e Description of the STAR v, (y) is
not very well and relatively worse
than by PHSD

o Crossover EoS agrees better
with the experimental data than
the pure hadronic EoS
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3-Fluid Dynamics

3FD: excitation function of v, slopes

03k a) proton =

e 3-Fluid Dynamic approach (3FD) gives
reasonable results for proton and pion
slopes of v,
and fails at 7.7 GeV for antiprotons

e Discrepancies between 3FD model and
STAR data are smaller in case of a
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a) proton

3FD: comparison with 1F-hydro and hybrid models

e 3-Fluid Dynamic approach (3FD) gives

reasonable results for proton and pion
slopes of v,

and fails at 7.7 GeV for antiprotons
e Discrepancies between 3FD model and
STAR data are smaller in case of a
ol crossover
. Y STAR
[ = 3FD: crossover
-
.02 = 3FD:hadron
[ -%- 1FD: x-over / - °
[ -©- 1FD: BM b) antiproton
0.3 hybrid / -
/
olf\ Y Y
0.05F

¢) pion T

0.05

4 5 6 78910

Recent hydrodynamical and hybrid
(hydro+kinetic) results are shown for
comparison
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J. Steinheimer, J. Auvinen, H. Petersen,

M. Bleicher and H. Stécker, [1402.7236]
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New thoughts about the phase diagram ?

Matching the DQPM with the HRG
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=> Softest point should be at higher baryon chemical potential !

T. Steinert et al., in preparation



Summary | — directed flow

> The microscopic Parton-Hadron-String-Dynamics (PHSD) transport approach
reproduces the general trends in the v, (y) excitation functions
in the energy range Vs =7.7-39 GeV and leads to an almost quantitative
agreement for protons, antiprotons and pions especially at higher energies. We
don't see any "wiggle-like" structures as expected by early hydro calculations
but see a softening of the EoS in the BES range.

> The PHSD results differ from those of HSD where no explicit partonic degrees
of freedom are incorporated. A comparison of both microscopic models has
provided detailed information on the effect of parton dynamics on the directed
flow (especially for pions).

> Inclusion of antiproton annihilation into several mesons as well as the inverse
processes in HSD/PHSD help to reproduce antiproton directed flow at lower
energies.

> 3-Fluid Dynamic approach (3FD) gives reasonable results for proton and pion
slopes of v, but fails at 7.7 GeV for antiprotons

> Crossover transition agrees better with the experiment than the pure hadronic
EoS
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Summary |l — multistrange antibaryons

> |nclusion of antiproton annihilation into several mesons as well as the inverse
processes in HSD/PHSD help to reproduce antibaryon yields at lower energies.

> Enhancement of multi-strange antibaryons with increasing centrality and
decreasing bombarding energy within PHSD relative to HSD.

> |ndications for the softest point in the EoS at higher baryon chemical potential
than assumed before!

> The heavy-ion dynamics close to the softest point is not well understood in all
models! Strong parton-hadron reactions in the crossover or mixed phase?

CBM should find out!
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Baryon
Stopping

@ Equation of State (EoS) 0p ey g
L |aT=0 MeV #
® T=100 MeV y,

e T=200 MeV ‘A

=
tn
T

Model Hadronic EoS (H-EoS)

|Galitsky and Mishustin, Sov. J. Nucl. Phys. 29, 181 (1979)]

1st-order transition to QGP (2P-Eo0S)

[Khvorostukhin, Skokov, Redlich, Toneev, EPJ C48, 531 (2008)]

Phase transition — Eo0S softening (in dense baryon matter)

@ Freeze-out energy-density: =4 = 0.4 GeV/fm?
@ Friction: estimated and tuned
@ Formation Time: = 2 fm/c for H-EoS and r= 0.33 fm/c for 2P-EoS

@ Coalescence coefficients for fragments



PHSD in the box
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Note: the volume is divided into 93 cells of size 1 fm3 !



Transport coefficients

] Cross sections in PHSD
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PHSD: —#— kinetic theory —— Kubo formalism
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Shear viscosity shows a minimum close to Tec !

V. Ozvenchuk et al., PRC87(2013)064903



Bulk viscosity
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bulk/shear versus temperature
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electric conductivity
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