Study the QCD Phase Diagram in High-Energy Nuclear Collisions

Recent Results from the 1st RHIC Beam Energy Scan

Nu Xu

Outline:

- 1) Introduction: RHIC BES-I Program
- 2) STAR Detector System
- 3) BES-I Results (selected) and BES-II
- 4) Summary

⁽¹⁾ Nuclear Science Division, Lawrence Berkeley National Laboratory, USA
 ⁽²⁾ College of Physical Science & Technology, Central China Normal University, China

Beam Energy Scan (I) at RHIC

QCD Emergent Properties

Study QCD Phase Structure

- Signals for onset of sQGP
- Signals for phase boundary
- Signals for critical point

Observables:

- 1st order phase transition
- (1) Azimuthally HBT*
- (2) Directed flow v_1^*
- Partonic vs. hadronic dof
- (3) R_{AA}: N.M.F.
- (4) Dynamical correlations*
- (5) v₂ NCQ scaling*

Critical point, correl. length

(6) Fluctuations*

(7) Di-lepton production

BES-I: $\sqrt{s_{NN}} = 7.7, 11.5, 14.5, 19.6, 27, 39$ GeV

BES-I	Energy (GeV)	*μ _Β (MeV)	Time (Week)	# of Events (Million)
2010	62.4	50	1	67
2010	39	85	1	130
2011	27	140	1.5	70
2011	19.6	200	1.5	36
2014	14.5	~270	3	21
2010	11.5	320	2	12
2010	7.7	420	4	4

STAR Experiment

Particle Identification at STAR

Multiple-fold correlations for the identified particles!

Period	Detectors	Physics
2001-2010	ТРС	u, d, s
2010	TPC + TOF	u, d, s + dilepton
2013	TPC + TOF + MTD	u. d. s. c. b +
2014	TPC + TOF + MTD + HFT	dilepton

→ **STAR:** Large coverage, excellent PID, fast DAQ

- detects nearly all particles produced at RHIC
- multiple fold correlation measurements
- Probes: bulk, penetrating, and *bulk-penetrating*

→ **STAR:** Excellent mid-y collider experiment

→ **STAR:** Expanding into forward rapidity regions

(1) Hadron Spectra

$\sqrt{s_{NN}}$ = 39 GeV Au+Au Collisions

Bulk Properties at Freeze-out

Chemical Freeze-out: (GCE)

- Central collisions => higher values of *T_{ch}* and *µ_B*!
- The effect is stronger at lower energy.

Kinetic Freeze-out:

- Central collisions => lower value of
 T_{kin} and larger collectivity β
- Stronger collectivity at higher energy

(2) BES Dependence of Dielectrons

- Low mass reg. (M_{ee} ≤ 1GeV): no obvious energy dependence in the ratio of data/cooktail. At 19.6, the ratio is consistent with SPS results.
- 2) Intermediate mass reg. ($1 \le M_{ee} \le 3GeV$): clear energy dependence:
 - => Correlated charm? Thermal radiation, ~exp(-*M*_{ee}/*T*)?

Understanding the Di-electrons

*CBM energy region: test the effect

- 1) With the in-medium broadened rho, model results* are consistent with experimental data $(m_{ee} \le 1 \text{ GeV/c}^2)$ at $\sqrt{s_{NN}}$ = 200, 62.4, 39, 27 and 19.6GeV. (* driven by the baryon density in the medium)
- 2) In Au+Au collisions at 200GeV, the centrality and p_T dependence results on data/hadronic cocktails (m_{ee} \leq 1 GeV/c²) understood with current model calculations

(3) BES Dependence of R_{AA}

- Suppression of high p_T hadrons: one of the key signatures for the formation of QGP in high-energy nuclear collisions
- 2) The suppression is not observed in low energy Au+Au collisions, especially for $\sqrt{s_{NN}} \le 11.5$ GeV

(4) Local Parity Violation

in High-Energy Nuclear Collisions

The separation between the same-charge and opposite-charge correlations.

Strong external EM field
 De-confinement and Chiral symmetry restoration

- 1) Parity-even observable: assumptions must be tested
- 2) BES dependence & UU coll. tests

- S. Voloshin, *PRC62*, 044901(00).

- STAR: *PR103*, 251601; PRC81, 054908(2009)

Dynamical Correlations

- (1) Below $\sqrt{s_{NN}}$ = 11.5 GeV, the splitting between the same- and opposite-sign charge pairs (SS-OS) disappear
- (2) If QGP is the source for the observed splitting at high-energy nuclear collisions → hadronic interactions become dominant at √s_{NN} ≤ 11.5 GeV

(5) NCQ Scaling in v₂

In the hadronic case, no number of quark scaling and the value of v_2 of ϕ will be small.

* Thermalization is assumed!

Collectivity v₂ Measurements

- Number of constituent quark (NCQ) scaling in v₂ => partonic collectivity => deconfinement in high-energy nuclear collisions
- 2) At $\sqrt{s_{NN}}$ < 11.5 GeV, the v₂ NCQ scaling is broken, indicating *hadronic interactions become dominant*.

BES v₂ and Model Comparison

(a) Hydro + Transport: consistent with baryon data.

[J. Steinheimer, V. Koch, and M. Bleicher PRC86, 44902(13).]

(b) NJL model: Hadron splitting consistent. Sensitive to vector-coupling, CME, net-baryon density dependent. [J. Xu, et al., arXiv:1308.1753/PRL112.012301]

"Local Parity Violation"

 $\mathbf{A}\pi^+ - \pi$

60

sQGP key signatures *turned off at* $\sqrt{s_{NN}}$ < 11.5 GeV!

20 10

% Most Central

Parton energy loss

20

40

 $\sqrt{s_{_{NN}}}$ (GeV)

27 GeV Au+Au

7.7 GeV Au+Au

% Most Central

(7) Higher Moments

- High moments for conserved quantum numbers:
 Q, S, B, in high-energy nuclear collisions
- 2) Sensitive to critical point (ξ correlation length):

$$\left\langle \left(\delta N \right)^2 \right\rangle \approx \xi^2, \ \left\langle \left(\delta N \right)^3 \right\rangle \approx \xi^{4.5}, \ \left\langle \left(\delta N \right)^4 \right\rangle \approx \xi^7$$

3) Direct comparison with calculations at any order:

$$S * \sigma \approx \frac{\chi_B^3}{\chi_B^2}, \qquad \kappa * \sigma^2 \approx \frac{\chi_B^4}{\chi_B^2}$$

4) Extract susceptibilities and freeze-out temperature. An independent/important test on thermal equilibrium in heavy ion collisions.

References:

- A. Bazavov et al. *1208.1220* (NLOTE) // STAR: *PRL*105, 22303(2010) // M. Stephanov: *PRL*102, 032301(2009) // R.V. Gavai and S. Gupta, *PLB696*, 459(2011) // S. Gupta, et al., *Science*, 332, 1525(2011) // F. Karsch et al, *PLB695*, 136(2011) // S.Ejiri etal, PLB633, 275(06) // M. Cheng et al, *PRD79*, 074505(2009) // Y. Hatta, et al, *PRL91*, 102003(2003)

Net-proton Higher Moments

STAR net-proton results:

- 1) All data show deviations below Poisson beyond statistical and systematic errors in the 0-5% most central collisions for $\kappa\sigma^2$ and S\sigma at all energies. Larger deviation at $\sqrt{s_{NN}} \sim 20$ GeV
- 2) Independent p and pbar production reproduces the observed energy dependence of $\kappa\sigma^2$ and $S\sigma$
- 3) UrQMD model show monotonic behavior in the moment products
- 4) Higher statistics needed for collisions at √s_{NN} < 20 GeV.
 BES-II is needed.

STAR: PRL, 112, 32302(14) / arXiv: 1309.5681

Net-proton Higher Moment

- 1) BES-II at $\sqrt{s_{NN}}$ < 20 GeV
- 2) RHIC e-cooling will provide increased luminosity ~ x3 10
- 3) STAR iTPC upgrade extend mid-rapidity coverage beneficial to several crucial measurements

BES-I (Year)	Energy (GeV)	*μ _Β (MeV)	Time (Week)	# of Events (Million)
2010	62.4	50	1	67
2010	39	85	1	130
2011	27	140	1.5	70
2011	19.6	200	1.5	36
2014	14.5	~270	4	21
2010	11.5	320	2	12
2010	7.7	420	4	4

BES-II	Energy	*μ _Β	Time	# of Events
(Year)	(GeV)	(MeV)	(Week)	(Million)
2018	20	200	35	700
-	-	-		_
2019	5	~ 500		100

 (1) In high-energy nuclear collisions, √s_{NN} ≥ 200 GeV, hot and dense matter, with partonic degrees of freedom and collectivity, has been formed

(2) RHIC BES-I: **[partonic]** < μ_B ~ 110 (MeV) (√s_{NN} ≥ 39 GeV) **[hadronic]** > μ_B ~ 320 (MeV) (√s_{NN} ≤ 11.5 GeV)

 (3) RHIC BES-II: focus at √s_{NN} ≤ 20 GeV region with higher luminosity (x10) + detector upgrade iTPC: Run18 (2017)

QCD Phase Structure at High Baryon Density

SIS300⁺⁺ is important:

- 1) Baryon density peaks at ~ $\sqrt{s_{NN}}$ = 8 GeV
- 2) di-e & di-µ simultaneously → Chiral property
- Baryon/strangeness and correlations → CP, Quarkyonic matter
- 4) Collectivity, exotics, ...