

Collective Flow as a Signal of the Phase Transition

CBM Symposium, GSI, 9.4.14 Hannah Petersen many thanks to Jussi Auvinen, Jan Steinheimer

Outline

- The phase diagram of strongly interacting matter
- The dynamics of heavy ion reactions
 - UrQMD hybrid approach
- Collective Flow
 - Elliptic flow
 - A signal of the perfect liquid?
 - Triangular flow
 - A signal of fluctuations?
 - Directed flow
 - A signal of the softest point?

The QCD Phase Diagram

- Quantum chromodynamics has a rich phase structure
- Lattice QCD: thermodynamic properties predict change in degrees of freedom

- Questions to be answered:
 - what is the temperature and the density?
 - what are the relevant degrees of freedom?
 - phase transition, critical point?
 - what are the transport properties?

• Collective flow is one of the most prominent observables

Theoretical Description

 Theoretical models are essential to gain insights about the properties of the quark gluon plasma, since the short timescale and small volume do not allow for a direct observation

Time Evolution of Heavy Ion Collisions

Hybrid approaches are very successful for the description of the dynamics

HP, special issue JPG, arXiv:1404.1763

UrQMD Hybrid

Initial State:

H.P. et al, PRC78 (2008) 044901 P. Huovinen, H. P. EPJ A48 (2012) 171

- Initialization of two nuclei
- Non-equilibrium hadron-string dynamics
- Initial state fluctuations are included naturally
- 3+1d Hydro +EoS:
 - SHASTA ideal relativistic fluid dynamics
 - Net baryon density is explicitly propagated
 - Equation of state at finit μ_B
- Final State:
 - Hypersurface at constant energy density
 - Hadronic rescattering and resonance decays within UrQMD

Au+Au @ 25 AGeV

Elliptic Flow

Elliptic Flow

Relativistic fluid dynamics with very **low viscosity** describes elliptic flow at RHIC (and LHC)

Collective Behaviour

Response of the system to initial spatial anisotropy

RHIC Beam Energy Scan

 Flow observables considered as evidence for QGP formation does it disappear at lower energies?

 Differential v₂ for charged hadrons almost identical for all beam energies
STAR, PRC 86 (2012) 054908

Differential Elliptic Flow

• Hybrid approach reproduces small energy dependence

- Overestimation at higher p_T due to missing viscosity
- Sensitive to particlization switching criterion

J. Auvinen and HP, arXiv:1310.1764

Interplay of Hydro + Transport

- Initial non-equilibrium evolution compensates for diminished hydrodynamic stage at lower beam energies
- Contribution of late stage hadronic rescattering ~10%

Triangular Flow

Triangular Flow

- Fluctuations introduce higher order flow coefficients that have been observed at the RHIC and LHC experiments
- A chance to disentangle initial state fluctuations from other e-by-e fluctuations related to phase transition?
- B. Alver and G. Roland, PRC 2010; Workshop summary: A. Adare, M. Luzum, HP, arxiv:1212.5388;
- M. Luzum and HP arxiv:1312.5503 (to be published as IOP topical review)

Measuring Fluctuations

- At high energies:
 - v_3 is equal to σ_{v_2}
- At lower energies v₃ vanishes

 Initial state geometry and fluctuations rather independent of beam energy

Triangular Flow

- Strong energy dependence in mid-central collisions
 - Transport not able to compensate for shortened hydro phase
- Agreement on the magnitude in central collisions

J. Auvinen and HP, arXiv:1310.1764

Sensitivity to $\langle t_{hydro} \rangle$

- v_3/ϵ_3 shows universal behaviour as a function of total duration of hydro phase
- $\bullet v_2$ does not follow scaling because of transport contribution

J. Auvinen and HP, arXiv:1310.1764

Directed Flow

Directed Flow

• Collective deflection of particles in reaction plane

 Non-monotonic behavior of v1 slope
–First order phase transition?

schematic view from ALICE, PRL 111, 232302 (2013)

STAR, arXiv:1401.3043

Equation of State

Schematic picture for a first order phase transition

Connection between pressure and flow via

$$\vec{p_x} \sim \int_t \int_A P(\rho, \epsilon) dA dt$$

J.Brachmann et al., Phys.Rev. C, 61, 2000

Antiflow around Midrapidity

Note that this is all p_x^{dir}

L.Csernai, Phys.Lett. B 458, 1999

J.Brachmann et al., Phys.Rev. C, 61, 2000

Fluid Calculation

Negative slope is reproduced in fluid dynamic calculation

- Assumptions
 - Cold nuclear matter initialization (no pre-equilibrium transport)
 - Direct integration of momentum in x-direction without hadronic rescattering

v1 Slope for Pions and Protons

- Particlization added including hadronic rescattering
- Isochronous versus iso-energy density transition criterion
 - Drastic effect on dip structure

Pions and Protons

 More realistic hybrid approach does not show difference between first order phase transition and cross-over

Comparison of Results

Pure fluid with isochronous freeze-out shows dip at lower beam energies
1.0
Hybrid Hydro-IE Hydro-IC

 All other calculations show non-negative slope for all beam energies

Summary

- Elliptic flow v₂ changes little as a function of beam energy; transport compensates for diminishing hydrodynamics
 - v₂(p_T) overshoots the data; particlization condition might require adjustment (viscosity?)
- Triangular flow v₃ has much more notable energy dependence,
 - v_3 is the better indicator of the presence of low-viscous fluid
 - Chance to constrain initial state fluctuations (remove background for other e-by-e fluctuation measures)
- Directed flow \mathbf{v}_1 found insensitive to the order of phase transition in hybrid approach
 - Old predictions can be reproduced
 - Rapidity slopes overestimated compared to STAR data

Outlook

New Transport Approach

- Development of new hadron cascade hybrid approach with the following strategy:
 - Make sure that hadron dynamics is properly understood
 - Take that to higher densities (Hybrid, Multi-particle interactions,...)
 - C++, open source code, ROOT interface
 - Modular transparent structures
 - Eventually parallel and GPU programming
- Use input from new measurements of elementary reactions for cross-sections, resonances
- Make predictions for CBM at FAIR !

SMASH

Pions and Protons

 More realistic hybrid approach does not show difference between first order phase transition and cross-over

Event Plane Angles

- Ψ_2 is **correlated** to reaction plane
- Ψ_3 distribution is flat
- Only fluctuations, no geometry in contrast to elliptic flow where both are mixed
- Triangular flow can be used for measuring granularity
- Distinguish fluctuations associated with CEP from other sources

H.P. et al, Phys.Rev. C82 (2010) 041901

Evolution in the Phase Diagram

Au+Au @ 10 AGeV

Exploring the Phase Diagram

• Spread of the system in temperature and baryo-chemical potential has consequences on observables for critical point or phase transition

Bass et al, arXiv:1202.0076, CPOD 2011

. ເ