

In-beam γ-ray spectroscopy using RIB Selected Recent Results

EURORIB-15

Radioactive beams from in-flight and ISOL facilities

- γ-ray detectors coupled to charged particle detectors
- •Coulomb Excitation and Transfer reaction as experimental method
- •Excitation energy, spectroscopic factor, $B(E\lambda)$ and electromagnetic moment

N=20 erosion and ehancement of N=16

Spectroscopic information from transfer reaction and Coulex at SPIRAL1 and Rex-Isolde Extend the knowledge to the n-rich C \rightarrow ¹⁷C spectroscopy

<u>Objectives :</u>

- Spin assignment of the 3 bound states
- *Spectroscopic factor of the GS to constraint its micropscopical configuration
- ♦ Locate the $3/2^+$ unbound state → $0d_{3/2}$ as constraint for SM calculations

 ^{18}O beam at 65MeV/A

¹⁶C secondary beam at 15MeV/A ~4.10⁴pps

⁴⁶Ar

 $B(E2;0^+ \to 2^+_1) = 196(39)e^2 fm^4$

H. Scheit et al., Phys.Rev.Lett 77 (1996) B(E2;0⁺ \rightarrow 2⁺₁) = 218(39) $e^2 fm^4$

A. Gade et al., Phys. Rev. C 74 (2006)

Lifetime measurement

Isotope	E_{γ} (keV)	$J^{\pi}_i ightarrow J^{\pi}_f$	τ (ps)	$B(E2) (e^2 \mathrm{fm}^4)$
⁴⁴ Ar	1158	$2^+ \rightarrow 0^+$	5.9(2.0)	67^{+44}_{-17}
	1588	$4^+ \rightarrow 2^+$	$3.9^{+3.6}_{-2.9}$	21^{+60}_{-10}
	693	$6^+ \rightarrow 4^+$	>40	<128
⁴⁶ Ar	1552	$2^+ \rightarrow 0^+$	$0.8\substack{+0.3 \\ -0.4}$	$114 {+67 \atop -32}$

D. Mengoni et al., Phys.Rev.C 82 (2010)

The N=28 Shell erosion

L.Gaudefroy et al, Phys.Rev.Lett 102(2009)

	$\Sigma_{\gamma}(\mathbf{x},\mathbf{v})$	D(L2) (e- m·)
43.8	1006 (19)	142 (52)
45.1	1437 (27)	101 (45)
46.3	976 (17)	97 (30)
47.4	449 (8)	167 (65)
	904 (16)	232 (56)
42.0	≈940	175 (69)
43.0	929 (17)	87 (24)
	43.8 45.1 46.3 47.4 42.0 43.0	$\begin{array}{cccc} 43.8 & 1006 & (19) \\ 45.1 & 1437 & (27) \\ 46.3 & 976 & (17) \\ 47.4 & 449 & (8) \\ & & 904 & (16) \\ \hline 42.0 & \approx 940 \\ 43.0 & 929 & (17) \\ \end{array}$

R.Ibbotson et al. Phys.Rev.C 59(1999)

In ⁴⁶Ar, the B(E2,0⁺ \rightarrow 2⁺) = 269(31)e²fm⁴ is in agreement with previous Coulex excitations measurements. Further supports the semi-magic character of ⁴⁶Ar and confirms the puzzling deviation to SM calculations

In ⁴³S the 971 keV and 1154 keV states have corresponding B(E2) of 98(34)e²fm⁴ and 143(16)e²fm⁴

Further investigation by safe Coulex from the on-going SPIRAL1-upgrade ⁴¹S, ³⁷⁻³⁹P, ⁴³⁻⁴⁵Cl

Shapes

- 1) Shape coexistence and shape change
- 2) Octupole correlations L. P. Gaffney et al, Nature 497, 199 (2013)

Shape Transition at N=60

S. Naimi et al., Phys. Rev. Lett. 105, 032502 (2010).

M. Albers et al., Phys. Rev. Lett. 108, 062701 (2012)

 \Box The n-rich nuclei between Z=37 and Z=42 present at N=60 one of the most impressive deformation change in the nuclear chart

Point to a specific π - ν combinaison

 $+ 2\mathbf{v}$

Shape coexistence

B(E2)'s connecting states to probe the collectivity and the mixing of configurations

 \blacksquare Q_o to determine the deformation

Coulomb excitation of RIB

Coulomb excitation results

✤Coulomb excitation of ⁹⁶Sr at 2.8 MeV/A –REX-ISOLDE

E. Clément et al , in preparationE. Clément et al. EPJ Web of Conferences 62, 01003 (2013)

Coulomb excitation results

Coulomb excitation of ⁹⁸Sr at 2.8 MeV/A
Ground state and non-yrast states populated

E. Clément et al , in preparation

E. Clément et al. EPJ Web of Conferences 62, 01003 (2013)

 \square ⁹⁶Sr :The Electric spectroscopic Q₀ is small as its B(E2) is rather large

 \rightarrow Vibrator character

 \rightarrow Weak quadrupole deformation

E. Clément et al, in preparation

 $B(E2\downarrow) = 2450(197)e^{2}fm^{4}$

E. Clément et al, in preparation

Systematic of Transitional Quadrupole moment around N=60

E. Clément et al , in preparation

K. Wrzosek-Lipska et al. Phys. Rev. C 86, 064305 (2012).M. Albers et al., Phys. Rev. Lett. 108, 062701 (2012)

E. Clément et al , in preparation

○Deformation of the 0⁺ states analyzed with the Quadrupole Sum Rules formalism

 \circ Sums of quadrupole E2 matrix elements give $Q^2 \sim |\beta_2|$ and $\cos(3\delta) \sim \gamma$

E. Clément et al, in preparation

Comparison with theory :

Comparison with theory :

E. Clement and CEA-Bruyère-Le-Chatel in preparation

E. Clement and CEA-Bruyère-Le-Chatel in preparation

Similarly to the Kr case, a clear classification of the states and the assignment of

The first theoretical excited band, predicted to be mainly of K=2 character

□ Probably calculated too low in excitation energy since it is not observed experimentally.

 \Box Large calculated B(E2,2⁺₂ \rightarrow 2⁺₁) value and the relative proximity of the three 2⁺ states suggest a very complex mixing between bands in the calculation.

E. Clement and CEA-Bruyère-Le-Chatel in preparation

Shape coexistence in a two-state mixing model

Perturbed states

Extract mixing and shape parameters from set of experimental matrix elements.

E. Clément et al. Phys. Rev. C 75, 054313 (2007)

In ⁷⁴Kr and ⁷⁶Kr, a prolate ground state coexists with an oblate excited configuration and they are strongly interaction

laboratoire commun CEA/DSM SDI CA CNRS/IN2P3

Shape coexistence in a two-state mixing model

Perturbed states

Extract mixing and shape parameters from set of experimental matrix elements.

• Energy perturbation of 0 ⁺ ₂ states	⁷⁶ Kr	⁷⁴ Kr	⁷² Kr
E. Bouchez et al. Phys. Rev. Lett 90 (2003)			
СС	0.73(1)	0.48(1)	0.10(1)
• Full set of matrix elements :			
E. Clément et al. Phys. Rev. C 75, 054313 (2007)	0.69(4)	0.48(2)	*
Excited Vampir approach: A. Petrovici et al., Nucl. Phys. A 665, 333 (00)	*	0.6	0.5

E. Clément et al , in preparation

•Over long isotopic chains, the two level mixing model shows that intrinsic configurations remain and the measured values are the results of the mixing amplitude

•True for Kr, Po and Hg so far \rightarrow Sr, Zr, Pb ?

Conclusion

•In-beam γ -ray spectroscopy with RIB provides fundamental information in the study of the nuclear structure far from stability

•Post-accelerated RIB at the suitable energies allow high quality spectroscopic measurement

Where to look :

At N=28 and N=20 new post-accelerated RIB for Transfer and Coulex data

RIB in the 3rd island of invertion : post accelerated beam of Co, Fe in the vicinity of N=40

Large isotopic chain for the shape coexistence , triple shape coexistence in the Pb, Sr/Zr chain