

High precision measurements in mirror β decays at GANIL

E. Liénard

LPC Caen, University of Caen

High precision measurements in nuclear β decays: why ?

Sensitive tool to test the electroweak Standard Model, complementary to high energies measurements

Hergé, "Tintin au Tibet", Ed. Casterman

Search for "traces"

Meet the beast

E. Liénard

EURORIB'15 – Hohenroda

High precision measurements in nuclear β decays: how ?

@ low energy, "traces" are hidden in correlations:

E. Liénard

High precision measurements in nuclear β decays: examples

- Unpolarized nuclei
 - Recoil detection
 - β recoil coincidences

LPCTrap@GANIL

a (C_S^2 , C_V^2 , C_T^2 , C_A^2) Pure GT: a_{GT} (C_T^2 , C_A^2) = -1/3 (SM) Pure F: a_F (C_S^2 , C_V^2) = +1 (SM)

- Polarized nuclei
 - β recoil coincidences
 - \vec{J} known

 $D \; \frac{\vec{J}.(\vec{p}_e \times \vec{q}\,)}{J(E_e E_V)}$

Triple correlation

 $D \propto \text{Im} (C_{S}C_{T}^{*}, C_{V}C_{A}^{*})$ D = 0 (SM)

Sensitive to T violation Search for new sources of CP violation

High precision measurements in mirror decays: why mirrors ?

• In V - A framework

 $a \frac{p_e \cdot q}{E_e E_v}$

mixed decays with large F component

where $\rho = GT/F$ is the mixing ratio

Test of CVC hypothesis, determination of V_{ud} (CKM matrix)

$$D = \frac{\vec{J}.(\vec{p}_e \times \vec{q})}{J(E_e E_V)} \qquad D = \frac{-2\rho \operatorname{Im}(\delta_{JJ'}(\frac{J}{J+1})^{1/2} \frac{C_A^*}{C_A})}{(1+\rho^2)} \qquad D \text{ can be } \neq 0 \text{ ONLY IF } \rho \neq 0$$

Measurement of D ≠ 0 (search for CP violation) has sense only in mirror decays !

Precision measurements in mirror decays to determine V_{ud}

• CVC hypothesis

$$Ft(0^+ \to 0^+) = \frac{K}{2C_V^2(1 + \Delta_R)} = constant \quad \Longrightarrow \quad C_V = constant$$

• Unitarity of the CKM matrix

$$\sqrt{2} C_V < G_F (\mu \text{ decay}) \qquad (\text{quarks mixing}) \qquad \begin{pmatrix} d'\\s'\\b' \end{pmatrix} = \begin{pmatrix} V_{ud} V_{us} & V_{ub}\\V_{cd} & V_{cs} & V_{cb}\\V_{td} & V_{ts} & V_{tb} \end{pmatrix} \begin{pmatrix} d\\s\\b \end{pmatrix}$$

$$\implies V_{ud} = G_F / \sqrt{2} C_V \qquad \text{unitarity condition:} \\ \left|V_{ud}\right|^2 + \left|V_{us}\right|^2 + \left|V_{ub}\right|^2 = 1 ?$$

The measurement of V_{ud} in many transitions enables to test the CVC hypothesis and the unitarity of the CKM matrix

Data sources

Hardy & 1	owner PRC91(2015)	
Transition	$ V_{ud} $	
Super-allowed pure Fermi	0.97417 (21)	
Neutron	0.9746 (13)	
Pion	0.9728 (30)	
Super-allowed mirror	0.9719(17)	
Naviliat et al. PRL102 (2009)		

- Best result from many measurements in 14 transitions
- Limited by theoretical corrections
- Result from existing data without specific measurements
- Great potential (many transitions)

Mirror transitions:

- New data in β decay, alternative to pure Fermi decays (0⁺ \rightarrow 0⁺)
- Many parameters to measure and to compute (corrections) in several decays

Final goals:

- Improve theoretical corrections
- Cross-check mirror vs pure Fermi
- Overall analysis \rightarrow higher precision, best constraint

Mirror transitions vs Pure Fermi (PF) transitions

12 June 2015

Mirror transitions: status

 $\rho = GT/F$:

- the least or even not known quantity !
- precisely determined from correlation measurements

- ¹⁹Ne T_{1/2}: Broussard et al. PRL112 (2014)
- ²¹Na M: *Mukherjee et al. EPJA35 (2008)* T_{1/2}: *Grinyer et al. PRC91 (2015)*
- ²³Mg M: Saastamoinen et al. PRC80 (2009)
- ³¹S M: Kankainen et al. PRC82 (2010) T_{1/2}: Bacquias et al. EPJA48 (2012)
- ³⁷K T_{1/2}: Shidling et al. PRC90 (2014)
- ³⁹Ca T_{1/2}: Blank et al. EPJA44 (2010)

The scientific community is now involved in this field...

Update of data in 2015: *M*, *T*_{1/2}, *BR*

$V_{ud}(2009) = 0.9719(17)$

Update of data in 2015: *M*, *T*_{1/2}, *BR*

• ρ precisely determined from correlation measurements

 $a_m = \frac{(1 - \frac{\rho^2}{3})}{(1 + \rho^2)}$

 $A_{m} = \frac{\rho^{2} - 2\rho_{\sqrt{J(J+1)}}}{(1 + \rho^{2})(J+1)}$

Severijns & Naviliat PST152(2013)

	ΔV_{ud}	а			Α	
Parent nucleus		$(\Delta V_{ud})^{\text{limit}}$	Factor $\Delta \mathcal{F}t$	ΔV_{ud}	$(\Delta V_{ud})^{\text{limit}}$	Factor $\Delta \mathcal{F} t$
³ H	0.0011	0.0010	2.1	0.0011	0.0009	2.3
¹¹ C	0.0025	0.0016	4.0	0.0207	0.0207	0.3
¹³ N	0.0017	0.0017	1.0	0.0123	0.0123	0.1
¹⁵ O	0.0020	0.0016	2.4	0.0023	0.0020	1.9
¹⁷ F	0.0019	0.0013	3.1	0.0341	0.0341	0.1
¹⁹ Ne	0.0011	0.0010	1.5	0.0011	0.0011	1.5
²¹ Na	0.0022	0.0017	2.7	0.0036	0.0034	1.3
²³ Mg	0.0025	0.0018	3.1	0.0034	0.0030	1.9
²⁵ A1	0.0019	0.0018	1.7	0.0056	0.0056	0.5
²⁷ Si	0.0029	0.0018	4.1	0.0068	0.0066	1.1
²⁹ P	0.0026	0.0018	3.4	0.0024	0.0014	4.3
³¹ S	0.0038	0.0018	5.9	0.0068	0.0061	1.8
³³ Cl	0.0021	0.0018	2.0	0.0013	0.0006	6.0
³⁵ Ar	0.0019	0.0018	1.1	0.0007	0.0004	4.8
³⁷ K	0.0034	0.0017	5.8	0.0050	0.0041	2.3
³⁹ Ca	0.0024	0.0016	3.5	0.0032	0.0027	2.2
⁴¹ Sc	0.0029	0.0022	2.7	0.0299	0.0299	0.2
⁴³ Ti	0.0076	0.0018	13.2	0.0167	0.0151	1.6
⁴⁵ V	0.0112	0.0020	17.7	0.0115	0.0032	11.2

a or *A* @ 0.5%?

A part of job could be achieved with LPCTrap....

The LPCTrap setup

BG suppression

Control of systematic effects

- β recoil ion detection in coincidence
- a deduced from recoil time-of-flight distribution

Simulation for ⁶He⁺ decay (GT)

13

E. Liénard

LPCTrap @ GANIL (LIRAT)

• Measurements of $a_{\beta\nu}$ and shakeoff probabilities in decay of ${}^{35}Ar^{1+} \& {}^{19}Ne^{1+}$

Analysis of data in progress (development of new simulation tools...)

LPCTrap @ GANIL (LIRAT)

• Measurements of $a_{\beta\nu}$ and shakeoff probabilities in decay of ${}^{35}Ar^{1+} \& {}^{19}Ne^{1+}$

Analysis of data in progress (development of new simulation tools...)

- <u>Expected results (⊿a /a)</u> : ~ 0.25 %
- Factor gained on $\Delta \rho / \rho$: ~ 4.5

$$\Delta V_{ud} / V_{ud} (2009) = 1.7 \times 10^{-3}$$

E. Liénard

12 June 2015

~ 18 % (a ~ 0...)

 ΔV_{ud} / V_{ud} (expected) = 9.7×10⁻⁴ !!

Future @ GANIL ?

• Development of new beams @ SPIRAL

lon	T _{1/2} (s)	Expected rate (pps)
²¹ Na	22.49	1.8E+08
²³ Mg	11.32	4.3E+07
³³ Cl	2.51	1.8E+07
³⁷ K	1.22	1.1E+07

- Contact: Pierre Delahaye
- Available in 2017 ?

• DESIR @ SPIRAL2 φ 1+

(Lol 2011, 2014)

In 2019 ?

• Ion with rate > 1E+07 pps

lon	T _{1/2} (s)	Expected rate (pps)	Expected nb of coinc.	Estimated $a \pm \sigma_a$	New $ ho\pm\sigma_{\! ho}$	Gain factor
²¹ Na	22.49	1.8E+08	1.7E+06	0.5587(18)	-0.7041(20)	3.6
²³ Mg	11.32	4.3E+07	8.1E+05	0.6967(26)	0.5426(30)	new
³³ Cl	2.51	1.8E+07	1.5E+06	0.8848(19)	0.3075(27)	new
³⁷ K	1.22	1.1E+07	1.9E+06	0.6580(17)	0.5872(19)	14.2

• Estimation of coinc. (1 week):

- Based on ³⁵Ar experiment
- T_{1/2} taken into account
- LPCTrap → LPCTrap2
 - phoswich for β detection
 - detectors number X 2
 - FASTER DAQ system

Gain in stat: factor of ~ 4

• Ion with rate > 1E+07 pps

lon	T _{1/2} (s)	Expected rate (pps)	Expected nb of coinc.	Estimated $a \pm \sigma_a$	New $ ho\pm\sigma_{\! ho}$	Gain factor
²¹ Na	22.49	1.8E+08	1.7E+06	0.5587(18)	-0.7041(20)	3.6
²³ Mg	11.32	4.3E+07	8.1E+05	0.6967(26)	0.5426(30)	new
³³ Cl	2.51	1.8E+07	1.5E+06	0.8848(19)	0.3075(27)	new
³⁷ K	1.22	1.1E+07	1.9E+06	0.6580(17)	0.5872(19)	14.2

- Estimation of coinc. (1 week):
 - Based on ³⁵Ar experiment
 - T_{1/2} taken into account
 - LPCTrap → LPCTrap2
 - phoswich for β detection
 - detectors number X 2
 - FASTER DAQ system

Gain in stat: factor of ~ 4

• Error estimation on a:

- $\sigma_{\text{stat}} = \sigma_{\text{syst}}$

- Based on ⁶He experiment
- Fléchard et al. JPG38(2011)
- $\rho^2 = (1-a)/(a+1/3)$
 - with $a = "a_{SM}"$ Severijns et al. PRC78(2008)
- + combination with existing results

What can we expect from *a* measurements ?

2009

LPCTrap2 @ GANIL

$$\Delta V_{ud} / V_{ud} = 1.7 \times 10^{-3}$$

$$\Delta V_{ud} / V_{ud} = 6 \times 10^{-4}$$

• Gain: factor of 2.8

• To be compared to $\Delta V_{ud} / V_{ud} = 2.2 \times 10^{-4}$ from pure Fermi

What can we expect from *a*, $T_{1/2}$, *BR* & *M* measurements ?

LPCTrap2 @ GANIL

+ $T_{1/2}$, BR & M improvements

- ²¹Na, expected gain: 2.5 ($T_{1/2}$) Finlay et al. @ TRIUMF 2014
- ²³Mg, expected gain: 3.7 (*BR*) Blank et al. @ JYFLTRAP 2013
- ³³Cl, expected gain: 2.2 ($T_{1/2}$), 2 (BR) Kurtukian et al. @ SPIRAL1 ?
- ³⁵Ar, expected gain: 2.8 (*T*_{1/2}), 6.6 (*BR*), 4.7 (*M*) Finlay et al. @ TRIUMF 2015 ?
- ³⁷K, expected gain: 14 (*BR*) *Kurtukian et al.* @ *ISOLDE* 2014

What can we expect from *a*, $T_{1/2}$, *BR* & *M* measurements ?

LPCTrap2 @ GANIL

+ $T_{1/2}$, BR & M improvements

 $\Delta V_{ud} / V_{ud} = 6 \times 10^{-4}$

$$\Delta V_{ud} / V_{ud} = 5 \times 10^{-4}$$

- Gain of a factor 1.2
- To be compared to $\Delta V_{ud} / V_{ud} = 2.2 \times 10^{-4}$ from pure Fermi
- Best cases: ³⁵Ar, ³³Cl and ³⁷K

What can we expect from *a*, $T_{1/2}$, *BR* & *M* measurements ?

LPCTrap2 @ GANIL

+ $T_{1/2}$, BR & M improvements

 $\Delta V_{ud} / V_{ud} = 6 \times 10^{-4}$

$$\Delta V_{ud} / V_{ud} = 5 \times 10^{-4}$$

- Gain of a factor 1.2
- To be compared to $\Delta V_{ud} / V_{ud} = 2.2 \times 10^{-4}$ from pure Fermi
- Best cases: ³⁵Ar, ³³Cl and ³⁷K

with only these 3 cases: $\Delta V_{ud} / V_{ud} = 5.6 \times 10^{-4}$ ³³Cl, ³⁷K: good candidates for first experiments

Precision measurements in mirror decays to probe CP violation

• CP violation: status

- Observed in meson decays but not enough to account for the large matter – antimatter asymmetry
- T-odd correlations in beta decay (*D* and *R*) and n-EDM enable to search for new sources of CP violation
- D correlation probes a region less accessible to n-EDM
- Current best results in nuclear decays:

Illustration: Sandbox Studio

¹⁹Ne decay $\rightarrow D = (1 \pm 6) 10^{-4}$ Calaprice et al. Hyp. Int. 22 (1985) n decay $\rightarrow D = (-0.94 \pm 1.89 \pm 0.97) 10^{-4}$ Mumm et al. PRL 107 (2011), Chupp et al. PRC 86 (2012)

• CP violation: D measurement

$$D \; \frac{J(\vec{p}_e \times \vec{q})}{J(E_e E_V)}$$

 β - recoil coincidences \vec{J} known

 $D = \frac{-2\rho \operatorname{Im}(\delta_{JJ'}(\frac{J}{J+1})^{1/2} \frac{C_A^*}{C_A})}{(1+\rho^2)}$ • $D \neq 0 \Rightarrow \rho \neq 0$ \Rightarrow Mirror decay ! New SPIRAL beams...

EURORIB'15 – Hohenroda

ППГ

Further development: cloud polarization from optical pumping

• New chamber, lasers & detectors

- Upgrade of the detector setup :
 → arrangement of 8 detector modules
- Lasers provided by COLLAPS (ISOLDE) or LUMIERE (DESIR)
- Interesting beams: ²³Mg, ³⁹Ca

"Winningmotions" project (Weak Interaction Novel INvestiGations Measuring the Orientation of Trapped IONS)

E. Liénard

Recoil

ion

 $\overline{\theta_{er}}$ =-45

EURORIB'15 – Hohenroda

D correlation

Recoil

ion

 $\overline{\theta_{er}}$ ≈45°

12 June 2015

"Winningmotions" project

<u>Coordinator</u>: P. Delahaye <u>Labs involved</u>: GANIL, IPNL, LPC Caen, IKS Leuven, ISOLDE, U Manchester, MPIK Heidelberg

- ²³Mg = "good" candidate
 - Ion cloud polarized by lasers (COLLAPS or LUMIERE)
 - High degree of polarization expected (~ 100%) and continuously measured through A_{β} (precisely known in many decays *Severijns et al. PRC78(2008)*)
 - Tests & 1st measurements @ ISOLDE, improved measurement @ DESIR

- A factor > 3 better than current result (¹⁹Ne)
- At the level of the D_{FSI} value \rightarrow first test for such calculation
- Final aim: $\sigma_D < 1 \times 10^{-4}$ / Future candidate: ³⁹Ca

Isotope	D _{FSI}
²³ Mg	-1.3×10 ⁻⁴
³⁹ Ca	4.7×10 ⁻⁵

DESIR layout (draft version)

- High precision measurements in nuclear β decays
 - Sensitive tool to test the Standard Model, complementary to high energy physics
 - Information hidden in correlations
 - Development of traps for nuclear physics
 - * clean radioactive sources
 - * clean environment for correlations measurements
- Development of new beams @ GANIL \rightarrow measurements in mirror decays
 - Short term plan: measurements of "a" at LIRAT & DESIR with LPCTrap2 using the new beams provided by SPIRAL (²¹Na, ²³Mg, ³³Cl, ³⁷K)
 - * required to improve $\rho \& V_{ud}$ deduced from mirror transitions
 - * with M, T & BR improvements \rightarrow "only" a factor 2.3 worse than "pure" Fermi
 - * ³³Cl & ³⁷K : good candidates for first experiments
 - Longer term plan: measurement of the triple correlation D in ²³Mg decay
 - * cloud polarization with laser in LPCTrap of second generation
 - * first tests @ ISOLDE, final experiments @ DESIR
 - * final aim: $\sigma_D < 1 \times 10^{-4}$ / search for new sources of CP violation

LPC Caen:

Gilles Ban Dominique Durand Xavier Fabian Xavier Fléchard Etienne Liénard François Mauger Gilles Quéméner

- GANIL: Pierre Delahaye Jean-Charles Thomas
- CIMAP: Alain Méry
- <u>CELIA:</u> Bernard Pons Baptiste Fabre

NSCL MSU:

IKS KUL:

Oscar Naviliat-Cuncic

Claire Couratin Paul Finlay Tomica Porobic Nathal Severijns Philippe Velten

and the LPC & GANIL technical staffs

12 June 2015