

Proton and neutron excitations in Mn towards N = 40

Hanne Heylen, EURORIB'15

Introduction

- Odd even ⁵³⁻⁶³Mn
 N = 28 N = 38
- Quadrupole moments

Introduction

- Collinear laser spectroscopy of ⁵¹⁻⁶⁴Mn at ISOLDE
 - Hyperfine spectra of N = 26 up to N = 39
 - Spins and magnetic moments
- Study nuclear structure in ⁶⁸Ni region around N = 40

- Why neutron-rich Mn?
- Collinear laser spectroscopy on exotic Mn
- What did we learn?

- Why neutron-rich Mn?
- Collinear laser spectroscopy on exotic Mn
- What did we learn?

Onset of deformation below ⁶⁸Ni

- Onset of deformation when protons are removed from Z = 28 shell ($\pi f_{7/2}$ orbital)
- Low-energy particle-hole excitations (np nh)
 - $_{\circ}$ (Sub)shell gaps → energy cost
 - $_{\circ}$ Quadrupole correlations → energy gain
 - \rightarrow Drive system to deformation

Baugher, PRC 86 (2012)

Why nuclear moments of Mn?

• Smooth S_{2n} across N = 40 but what is gs and isomer in ${}^{62}Mn$?

Naimi, PRC 86 (2012)

- Tentative spins I
- Nuclear moments only known up to ⁵⁶Mn (N = 31) Charlwood, PLB 690 (2010)
 - Magnetic moment µ: Nuclear configuration
 - Quadrupole moment Q: Deformation

Study onset of deformation of Mn towards N = 40 via I, μ , Q

- Why neutron-rich Mn?
- Collinear laser spectroscopy on exotic Mn
- What did we learn?

Collinear laser spectroscopy

- Hyperfine interaction
 - \circ Nucleus
 - Electrons

- Why neutron-rich Mn?
- Collinear laser spectroscopy on exotic Mn
- What did we learn?

g-factors of odd-even Mn

Understanding g-factors of odd-even Mn

GXPF1A vs LNPS • Neutron excitations across N =40

Honma, PRC65 (2002); Lenzi, PRC82 (2010)

Understanding g-factors of odd-even Mn

LNPS calculations

 Significant increase in neutron excitations across N = 40 along with proton excitations across Z = 28

Summary

- Hyperfine structures of ${}^{51-64}$ Mn (up to N = 39)
 - Isomers in ^{58,60,62}Mn
- Firm spin assignments
 - \circ I = 5/2 for ^{59,61,63}Mn
 - I = 1 and I = 4 in ^{58,60,62}Mn and I = 1 in ⁶⁴Mn
- g-factors are compared to shell model calculations using GXPF1A and LNPS effective interactions
 - Neutron excitations across N = 40
 - Proton excitations across Z = 28

Next? Very recent past

- Quadrupole moments of odd Mn
 - o Different optical transition with larger quadrupole splitting

Questions?

COLLAPS collaboration (2014)