Structure beyond the N=50 shell closure in neutron-rich nuclei in the vicinity of ⁷⁸Ni: The case of N=51 nuclei

<u>G. Duchêne¹</u>, **F. Didierjean**¹, <u>D. Verney</u>², G. de Angelis³, C. Fransen⁴, R. Lozeva¹, J. Litzinger⁴, A. Dewald⁴, M. Niikura², D. Bazzacco⁵, E. Farnea⁵, S. Aydin⁵, A. Bracco⁶, S. Bottoni⁶, L. Corradi³, F. Crespi⁶, E. Ellinger⁴, E. Fioretto³, S. Franchoo², A. Goasduff¹, A. Gottardo⁵, L. Grocutt⁷, M. Hackstein⁴, F. Ibrahim², K. Kolos², S. Leoni⁶, S. Lenzi⁵, S. Lunardi⁵, Menegazzo⁵, D. Mengoni⁵, C. Michelagnoli⁵, T. Mijatovic⁸, V. Modamio³, O. Möller⁹, G. Montagnoli⁵, D. Montanari⁵, A. Morales⁶, D.R. Napoli³, F. Nowacki¹, F. Recchia³, E. Sahin³, F. Scarlassara⁵, L. Sengele¹, K. Sieja¹, J. F. Smith⁷, A. Stefanini³, C. Ur⁵, J.J. Valiente Dobon³, V. Vandone⁶

> 1 IPHC/CNRS-University of Strasbourg (F) 2 IPNO/CNRS-University Paris Sud-11 (F) 3 INFN LNL (I) 4 IKP University of Cologne (D) 5 INFN and University of Padova (I) 6 INFN and University of Padova (I) 7 University of Paisley (UK) 8 Ruder Boskovic Institute (Cr) 9 IKP, TU Darmstadt (D)

Beyond N = 50

N = 50 nuclei

- Holy grail : ⁷⁸Ni
- Great exp and theo effort

What is beyond N = 50?

- 3s_{1/2}, 2d_{3/2}, 2d_{5/2}, 1g_{7/2}, 1h_{11/2} orbitals
- Precise orbital ordering not fixed as well as their evolution vs Z

Low lying states in N=51 nuclei

Known for Z > 40

Of two nature:

- single-particle states
- or core-particle coupling

J. Duflo and A.P. Zuker, Phys. Rev. C59, R2347 (1999) K. Sieja et al., Phys. Rev. C79, 064310 (2009)

N = 51 nuclei

Single-particle states

- Ig.s. = 5/2⁺ firmly established for 36 < Z < 50 ⁸⁷Kr ¹⁰¹Sn
- Down sloping 1/2⁺ states for Z < 40; carries the major part of the v3s1/2 strength
- 7/2⁺ state corresponds to an excitation into the 1g_{7/2} orbital
- 9/2⁺ state corresponds to an excitation across the N=50 gap, a 2p-1h d_{5/2}² g_{9/2}⁻¹ neutron configuration
- Fed via (d,p) reactions for 34 < Z < 38</p>
- Neutron stripping strongly enhanced for single-particle states and large spectroscopic factors deduced

N = 51 nuclei

Core-particle coupling

- Weak-coupling scheme 2⁺_{Core} Ø vd5/2
 N. Auerbach, Phys. Lett. B27, 127 (1968)
- The weak-coupling scheme applies as long as the N=50 gap is strong
- Generates a multiplet of 5 states (1/2⁺ to 9/2⁺) with 7/2⁺ at lowest energy in case of a quadrupolar core excitation
- Barycentre is similar to E_x(2⁺)_{Core}
- Spectroscopic factor (SF) of corecoupled states are nearly zero (non stripping state)

Physics motivation

Porquet & Sorlin

- Energies of 9/2₁⁺ follows closely the 2⁺ core energies -> should be a rather pure core-coupled configuration
- "Energies of the low lying 1/2₁⁺ and 7/2₁⁺ states depart significantly from that of the 2⁺ core at Z < 38 and Z > 44"

-> single-particle states

O. Sorlin and M.G. Porquet, Prog. in Part. Nucl. Phys. 61 (2008) 602

The 1/2₂⁺ and 7/2₂⁺ states are most likely core coupled

Thomas

- > (d,p) reaction to populate ⁸⁵Se
- G.s. is 5/2⁺, 1/2₁⁺ (SF = 0.3 +/- 0.09), 7/2₁⁺ (SF = 0.77 +/- 0.27) or 3/2₁⁺ (SF = 0.06 +/- 0.09)

J.S. Thomas et al., Phys. Rev. C76, 044302 (2007)

Physics motivation

Contradictory assignments

- States have been populated in N = 51 nuclei by (d,p) transfer
 - States with sizable SF correspond likely to single-particle config. with rather long decay times
 - States with small SF are likely corecoupled

From NNDC

- 9/2₁⁺ lifetime in ⁸⁹Sr: τ =0.30 (9) ps
 likely core-coupled
- 7/2₁ + SF and lifetime in ⁸⁹Sr:
 - SF=0.016 and au = 0.38 (14) ps and there is no stripping in ⁸⁷Kr likely core-coupled
- 7/2₂ SF in ⁸⁹Sr and ⁸⁷Kr: SF=0.84 and SF=0.49, resp. likely single particle
- 7/2₁⁺ SF in ⁸⁵Se: SF=0.77 likely single particle

Sudden E* drop by ~1.4 MeV of the $vg_{7/2}$ single-particle config. by removal of 2p from $^{87}\mbox{Kr}$ to $^{85}\mbox{Se}$

Lifetime calculations

Single-particle config

 ν (g_{7/2}) or ν (g_{9/2})⁻¹(d_{5/2})² $_0 \rightarrow \nu$ (d_{5/2})

Core-coupled config

Core 2⁺ x $\nu(d_{5/2}) \rightarrow Core 0^+ x \nu(d_{5/2})$

Calculated lifetimes of the 7/2+ states done by D. Verney (IPN Orsay)				
nucleus	$ au$ (7/2 ⁺) 2 ⁺ \otimes d _{5/2}	τ(7/2 ⁺) 0 ⁺ ⊗ g _{7/2}		
⁸⁹ Sr	0.16 ps	14.9 ps		
⁸⁷ Kr	0.19 ps	23.2 ps		
⁸⁵ Se	0.42 ps	79.5 ps		
⁸³ Ge	1.01 ps	309 ps		

Lifetime measurement @ LNL with AGATA + PRISMA

Goal

Determine the nature of first $7/2^+$ and $9/2^+$ excited states

Method

- Populate and study several N=51 nuclei (⁸⁷Kr, ⁸⁵Se, ⁸³Ge)
- Determine the order of magnitude of the lifetimes
 - □ Around or below 1 ps (fast) \rightarrow core-coupled config
 - Above 10 ps (slow) → single-particle config

Technique

- Recoil Distance Doppler Shift method (RDDS)
- Small cross sections → two positions □ 35 (1) µm ~14 shifts ~14 shifts
 - 253 (2) μm

Experimental setup

AGATA Demonstrator + PRISMA + Koeln plunger

Lifetime measurement @ LNL with AGATA + PRISMA

AGATA @ LNL

F. Didierjean IPHC Strasbourg, France

AGATA @ LNL

Principle of the RDDS method

plunger distance : 35 µm

plunger distance : 253 μm

d : target to degrader distance τ : effective lifetime of the state v : speed of the γ emitter

$$R_i = \frac{I_u}{I_u + I_s}$$

$$\tau_i^{eff} = -\frac{d}{v \cdot Ln(R_i)}$$

⁸⁷Kr spectrum - all distances

⁸⁷Kr spectrum – all distances

⁸⁷Kr spectrum: d = 35 μ m

⁸⁷Kr spectrum: d = 253 μ m

⁸⁷Kr: effective lifetimes

Bateman equations

Bateman equations

$$\lambda_{i} \int_{0}^{t} N_{i}(t) dt = \frac{\lambda_{i} \rho_{sf} \lambda_{sf}}{\lambda_{i} - \lambda_{sf}} \left[\frac{1}{\lambda_{sf}} \left(1 - e^{-\lambda_{sf}t} \right) - \frac{1}{\lambda_{i}} \left(1 - e^{-\lambda_{i}t} \right) \right] \\ + \frac{\lambda_{i} \rho_{j} \lambda_{j}}{\lambda_{i} - \lambda_{j}} \left[\frac{1}{\lambda_{j}} \left(1 - e^{-\lambda_{j}t} \right) - \frac{1}{\lambda_{i}} \left(1 - e^{-\lambda_{i}t} \right) \right]$$

⁸⁷Kr: (7/2⁺₁) state lifetime

 τ =0.7 ps (+2.0/-0.7) ps without sf

 $\tau\text{=}0.7$ ps (+4.0/-0.7) ps with sf

G. Dl

⁸⁷Kr: (9/2⁺₁) state lifetime

 τ <0.7 ps (+1.2/-0.7) ps without sf

 $\tau < 0.7$ ps (+8.4/-0.7) ps with sf

⁸⁷Kr: (11/2-1) state lifetime

 τ =0.8 ps (+2.6/-0.8) ps

G. Dl

⁸⁷Kr: lifetimes

Effective lifetimes in ⁸⁵Se: $7/2_1^+$ and $9/2_1^+$

Plunger distances (μm)	7/2 ₁ ⁺ → 5/2 ⁺		9/2 ₁ ⁺ → 5/2 ⁺	
	R(1115 keV)	τ _{eff} (ps)	R(1436 keV)	τ _{eff} (ps)
35	0.65(3)	3(2)	0.65(3)	3(2)
253	<0.11	<4	<0.11	<4

Calculated lifetimes for ⁸⁵Se states are:

- > 0.42 ps for core-coupled config
- 79.5 ps for single-particle config

Independently of the feeding lifetimes, lifetimes of both states in ⁸⁵Se are short lived and the core-coupled config is dominating

SM calculations

- > $\pi\pi$ interaction fit to new data on N=50
- vv GCN5082 interaction
- \succ π v monopole corrected G-matrix
- Proven successful and predictive in a large number of applications

		7/2+ -> gs	9/2+ -> gs
⁸⁷ Kr	Exp.	τ=0.7 ^{+4.0} - _{0.7} ps	τ< 0.7 ^{+8.4} - _{0.7} ps
	SM	M1: 0.44 ps E2: 0.51 ps	E2: 1.09 ps
⁸⁵ Se	Exp.	τ ^{eff} ~ 3(2)	$\tau^{\rm eff} \sim 3(2)$
	SM	M1: 0.31 ps E2: 0.50 ps	E2: 1.40 ps

Summary and perspectives

Summary

- Lifetimes of low-lying 7/2₁⁺ and 9/2₁⁺ states have been measured in ⁸⁷Kr and ⁸⁵Se N=51 nuclei to determine their single-particle or core-coupled character
- Nuclei have been produced at LNL using the ⁸²Se + ²³⁸U multi-nucleon transfer reaction; Setup: AGATA Demonstrator (5TC) + PRISMA + Koeln Plunger
- > The RDDS technique has been used with a Nb degrader
- > The main goal of the experiment is to determine the order of magnitude of these lifetimes, only two plunger positions were used 35 and 253 μ m
- Batman equations were used to extract lifetime values in ⁸⁷Kr and effective lifetime values in ⁸⁵Se
- Measured lifetime values indicate that both states in both nuclei are short lived and their structures are compatible with core-coupled configurations
- > Shell-model calculations using a ⁷⁸Ni core and $\pi(fpg)$ -v(sdgh) valence space in j-coupling mode predict low-lying states mainly based on core-coupled configurations
- > Theoretical and experimental lifetimes are in very good agreement

Perspectives

Two AGATA@GANIL experiments, a long one (14d) for spectroscopy studies in the same mass region and a plunger one (9d) for study of N=51 nuclei lifetimes down to ⁸³Ge (3 positions), have been run in April and May