Structure beyond the $\mathrm{N}=50$ shell closure in neutron-rich nuclei in the vicinity of ${ }^{78} \mathrm{Ni}$: The case of $\mathrm{N}=51$ nuclei

G. Duchêne ${ }^{1}$, F. Didierjean ${ }^{1}$, D. Verney ${ }^{2}$, G. de Angelis ${ }^{3}$, C. Fransen ${ }^{4}$, R. Lozeva ${ }^{1}$, J. Litzinger ${ }^{4}$, A. Dewald ${ }^{4}$, M. Niikura ${ }^{2}$, D. Bazzacco ${ }^{5}$, E. Farnea ${ }^{5}$, S. Aydin ${ }^{5}$, A. Bracco ${ }^{6}$, S. Bottoni ${ }^{6}$, L. Corradi ${ }^{3}$, F. Crespi6, E. Ellinger ${ }^{4}$, E. Fioretto ${ }^{3}$, S. Franchoo ${ }^{2}$, A. Goasduff¹, A. Gottardo ${ }^{5}$, L. Grocutt7, M. Hackstein ${ }^{4}$, F. Ibrahim², K. Kolos², S. Leoni ${ }^{6}$, S. Lenzi5, S. Lunardi ${ }^{5}$, Menegazzo ${ }^{5}$, D. Mengoni ${ }^{5}$,
C. Michelagnoli5, T. Mijatovic ${ }^{8}$, V. Modamio ${ }^{3}$, O. Möller ${ }^{9}$, G. Montagnoli ${ }^{5}$, D. Montanari5, A. Morales ${ }^{6}$, D.R. Napoli 3 , F. Nowacki ${ }^{1}$, F. Recchia ${ }^{3}$, E. Sahin ${ }^{3}$, F. Scarlassara ${ }^{5}$, L. Sengele ${ }^{1}$, K. Sieja ${ }^{1}$, J. F. Smith ${ }^{7}$, A. Stefanini ${ }^{3}$, C. Ur ${ }^{5}$, J.J. Valiente Dobon ${ }^{3}$, V. Vandone ${ }^{6}$

```
1 \text { IPHC/CNRS-University of Strasbourg (F)}
2 IPNO/CNRS-University Paris Sud-11 (F)
                                    3 INFN LNL (I)
    4 \text { IKP University of Cologne (D)}
    5 \text { INFN and University of Padova (I)}
    6 INFN and University of Milano (I)
    7 University of Paisley (UK)
    8 Ruder Boskovic Institute (Cr)
        I IKP, TU Darmstadt (D)
```


Beyond N = 50

$N=50$ nuclei
$>$ Holy grail: ${ }^{78} \mathrm{Ni}$
> Great exp and theo effort

What is beyond $\mathrm{N}=50$?
$>3 s_{1 / 2}, 2 d_{3 / 2}, 2 d_{5 / 2}, 1 g_{7 / 2}, 1 h_{11 / 2}$ orbitals
$>$ Precise orbital ordering no \dagger fixed as well as their evolution vs Z

Low lying states in $\mathrm{N}=51$ nuclei
Known for Z > 40
Of two nature:
> single-particle states
$>$ or core-particle coupling

[^0]
$N=51$ nuclei

Single-particle states

$>$ Ig.s. $=5 / 2^{+}$firmly established
for $36 \leq Z \leq 50$
${ }^{87} \mathrm{Kr} \quad{ }^{101} \mathrm{Sn}$
$>$ Down sloping $1 / 2^{+}$states for $Z \leq 40$; carries the major part of the v3s1/2 strength
$>7 / 2^{+}$state corresponds to an excitation into the $1_{9 / 2}$ orbital
$>9 / 2^{+}$state corresponds to an excitation across the $\mathrm{N}=50 \mathrm{gap}$, a $2 \mathrm{p}-1 \mathrm{~h} \mathrm{~d}_{5 / 2^{2}} \mathrm{~g}_{9 / 2}{ }^{-1}$ neutron configuration
$>$ Fed via (d, p) reactions for $34<Z<38$
> Neutron stripping strongly enhanced for single-particle states and large spectroscopic factors deduced

$N=51$ nuclei

Core-particle coupling

$>$ Weak-coupling scheme 2^{+}Core $\otimes v \mathrm{~d} 5 / 2$ N. Auerbach, Phys. Lett. B27, 127 (1968)
> The weak-coupling scheme applies as long as the $\mathrm{N}=50$ gap is strong

- Generates a multiplet of 5 states ($1 / 2^{+}$to $9 / 2^{+}$) with $7 / 2^{+}$at lowest energy in case of a quadrupolar core excitation

Barycentre is similar to $E_{x}\left(2^{+}\right)_{\text {core }}$
> Spectroscopic factor (SF) of corecoupled states are nearly zero (non stripping state)

D. Verney courtesy

Physics motivation

Porquet \& Sorlin

$>$ Energies of $9 / 2_{1}{ }^{+}$follows closely the 2^{+}core energies $->$should be a rather pure core-coupled configuration
$>$ "Energies of the low lying $1 / 21^{+}$and $7 / 2_{1}{ }^{+}$ states depart significantly from that of the 2^{+}core at $Z<38$ and $Z>44 "$
-> single-particle states
O. Sorlin and M.G. Porquet, Prog. in Part. Nucl. Phys. 61 (2008) 602
$>$ The $1 / 2_{2}{ }^{+}$and $7 / 2_{2}+$ states are mos \dagger likely core coupled

Thomas

$>(d, p)$ reaction to populate ${ }^{85} \mathrm{Se}$
$>G . s$. is $5 / 2^{+}, 1 / 2_{1}^{+}(S F=0.3+/-0.09)$, $7 / 2_{1}+(S F=0.77+/-0.27)$ or $3 / 2_{1}{ }^{+}$ (SF = $0.06+/-0.09)$
J.S. Thomas et al., Phys. Rev. C76, 044302 (2007)

Physics motivation

Contradictory assignments

$>$ States have been populated in $N=51$ nuclei by (d, p) transfer

- States with sizable SF correspond likely to single-particle config. with rather long decay times
- States with small SF are likely corecoupled

From NNDC
$>9 / 2_{1}{ }^{+}$lifetime in ${ }^{89} \mathrm{Sr}: \tau=0.30$ (9) ps likely core-coupled
$>7 / 2_{1}{ }^{+}$SF and lifetime in ${ }^{89} \mathrm{Sr}$:
$\mathrm{SF}=0.016$ and $\tau=0.38$ (14) ps and there is no stripping in ${ }^{87} \mathrm{Kr}$ likely core-coupled
$>7 / 2_{2}{ }^{+} \mathrm{SF}$ in ${ }^{89} \mathrm{Sr}$ and ${ }^{87} \mathrm{Kr}$: $\mathrm{SF}=0.84$ and $\mathrm{SF}=0.49$, resp. likely single particle
$>7 / 2_{1}{ }^{+} \mathrm{SF}$ in ${ }^{85} \mathrm{Se}$:
SF=0.77
likely single particle

Sudden E^{*} drop by $\sim 1.4 \mathrm{MeV}$ of the $\mathrm{vg}_{7 / 2}$ single-particle config. by removal of $2 p$ from ${ }^{87} \mathrm{Kr}$ to ${ }^{85} \mathrm{Se}$

Lifetime calculations

Single-particle config

$$
v\left(\mathrm{~g}_{7 / 2}\right) \text { or } v\left(\mathrm{~g}_{9 / 2}\right)^{-1}\left(\mathrm{~d}_{5 / 2}\right)^{2} \rightarrow v\left(\mathrm{~d}_{5 / 2}\right)
$$

Core-coupled config
Core $2^{+} \times v\left(\mathrm{~d}_{5 / 2}\right) \rightarrow$ Core $0^{+} \times v\left(\mathrm{~d}_{5 / 2}\right)$

Calculated lifetimes of the 7/2+ states done by D. Verney (IPN Orsay)

nucleus	$\tau\left(7 / 2^{+}\right) 2^{+} \otimes \mathrm{d}_{5 / 2}$	$\tau\left(7 / 2^{+}\right) 0^{+} \otimes \mathrm{g}_{7 / 2}$
${ }^{89} \mathrm{Sr}$	0.16 ps	14.9 ps
${ }^{87} \mathrm{Kr}$	0.19 ps	23.2 ps
${ }^{85} \mathrm{Se}$	0.42 ps	79.5 ps
${ }^{83} \mathrm{Ge}$	1.01 ps	309 ps

Lifetime measurement @ LNL with AGATA + PRISMA

Goal

$>$ Determine the nature of first $7 / 2^{+}$and $9 / 2^{+}$excited states

Method

> Populate and study several $\mathrm{N}=51$ nuclei $\left({ }^{87} \mathrm{Kr},{ }^{85} \mathrm{Se},{ }^{83} \mathrm{Ge}\right)$
$>$ Determine the order of magnitude of the lifetimes
\square Around or below 1 ps (fast) \rightarrow core-coupled config
\square Above 10 ps (slow) \rightarrow single-particle config
Technique
$>$ Recoil Distance Doppler Shift method (RDDS)
$>$ Small cross sections \rightarrow two positions

- 35 (1) $\mu \mathrm{m}$
~14 shifts
- 253 (2) $\mu \mathrm{m}$
~14 shifts

Experimental setup

AGATA Demonstrator + PRISMA + Koeln plunger

Lifetime measurement @ LNL with AGATA + PRISMA

AGATA @ LNL

AGATA @ LNL

F. Didierjean IPHC Strasbourg, France

Principle of the RDDS method

plunger distance : $35 \mu \mathrm{~m}$

plunger distance : $253 \mu \mathrm{~m}$

d : target to degrader distance τ : effective lifetime of the state v : speed of the γ emitter

$$
R_{i}=\frac{I_{u}}{I_{u}+I_{s}} \left\lvert\, \tau_{i}^{e f f}=-\frac{d}{v . \operatorname{Ln}\left(R_{i}\right)}\right.
$$

${ }^{87} \mathrm{Kr}$ spectrum - all distances

${ }^{87} \mathrm{Kr}$ spectrum - all distances

${ }^{87} \mathrm{Kr}$ spectrum: $\mathrm{d}=35 \mu \mathrm{~m}$

${ }^{87} \mathrm{Kr}$ spectrum: $\mathrm{d}=253 \mu \mathrm{~m}$

${ }^{87} \mathrm{Kr}$: effective lifetimes

Bateman equations

$$
\begin{aligned}
& \left\{\begin{array}{l}
\frac{d N_{s f}(t)}{d t}=-\lambda_{s f} N_{s f}(t) \\
N_{s f}(t)=\rho_{s f} \cdot \exp \left(-\lambda_{s f} t\right)
\end{array}\right. \\
& \left\{\begin{array}{l}
\frac{d N_{j}(t)}{d t}=-\lambda_{j} N_{j}(t) \\
N_{j}(t)=\rho_{j}\left(-\lambda_{t}\right)
\end{array}\right. \\
& N_{j}(t)=\rho_{j} \cdot \exp \left(-\lambda_{j} t\right) \\
& \lambda=1 / \tau^{\text {eff }} \\
& \frac{d N_{i}(t)}{d t}=\lambda_{s} N_{s f}(t)+\lambda_{j} N_{j}(t)-\lambda_{i} N_{i}(t)
\end{aligned}
$$

Bateman equations

$$
\begin{aligned}
\lambda_{i} \int_{0}^{t} N_{i}(t) d t=\frac{\lambda_{i} \rho_{s f} \lambda_{s f}}{\lambda_{i}-\lambda_{s f}}[& \left.\frac{1}{\lambda_{s f}}\left(1-e^{-\lambda_{s f} t}\right)-\frac{1}{\lambda_{i}}\left(1-e^{-\lambda_{i} t}\right)\right] \\
& +\frac{\lambda_{i} \rho_{j} \lambda_{j}}{\lambda_{i}-\lambda_{j}}\left[\frac{1}{\lambda_{j}}\left(1-e^{-\lambda_{j} t}\right)-\frac{1}{\lambda_{i}}\left(1-e^{-\lambda_{i} t}\right)\right]
\end{aligned}
$$

${ }^{87} \mathrm{Kr}:\left(7 / 2^{+}\right)$state lifetime

$\tau=0.7 \mathrm{ps}(+2.0 /-0.7) \mathrm{ps}$ without sf $\tau=0.7 \mathrm{ps}(+4.0 /-0.7) \mathrm{ps}$ with sf

${ }^{87} \mathrm{Kr}:\left(9 / 2^{+}\right)$state lifetime

$\tau<0.7 \mathrm{ps}(+1.2 /-0.7) \mathrm{ps}$ without sf $\tau<0.7 \mathrm{ps}(+8.4 /-0.7) \mathrm{ps}$ with sf

${ }^{87} \mathrm{Kr}:\left(11 / 2^{-}{ }_{1}\right)$ state lifetime

$$
\tau=0.8 \mathrm{ps}(+2.6 /-0.8) \mathrm{ps}
$$

${ }^{87} \mathrm{Kr}$: lifetimes

Effective lifetimes in ${ }^{85} \mathrm{Se}: 7 / 2_{1}{ }^{+}$and $9 / 2_{1}{ }^{+}$

Plunger distances ($\mu \mathrm{m}$)	$7 / 2_{1}{ }^{+} \rightarrow 5 / 2^{+}$		$9 / 2_{1}{ }^{+} \rightarrow 5 / 2^{+}$	
	R(1115 keV)	Teff (ps)	$\mathrm{R}(1436 \mathrm{keV})$	Teff (ps)
35	0.65(3)	3(2)	0.65(3)	3(2)
253	<0.11	<4	<0.11	<4

Calculated lifetimes for ${ }^{85} \mathrm{Se}$ states are:
>0.42 ps for core-coupled config
> 79.5 ps for single-particle config
Independently of the feeding lifetimes, lifetimes of both states in ${ }^{85} \mathrm{Se}$ are short lived and the core-coupled config is dominating

SM calculations

Excellent theory-experiment agreement -> core-coupled structures

Summary and perspectives

Summary

- Lifetimes of low-lying $7 / 2_{1}{ }^{+}$and $9 / 2_{1}{ }^{+}$states have been measured in ${ }^{87} \mathrm{Kr}$ and ${ }^{85} \mathrm{Se} \mathrm{N}=51$ nuclei to determine their single-particle or core-coupled character
- Nuclei have been produced at LNL using the ${ }^{82} \mathrm{Se}+{ }^{238} \mathrm{U}$ multi-nucleon transfer reaction; Setup: AGATA Demonstrator (5TC) + PRISMA + Koeln Plunger
> The RDDS technique has been used with a Nb degrader
> The main goal of the experiment is to determine the order of magnitude of these lifetimes, only two plunger positions were used 35 and $253 \mu \mathrm{~m}$
- Batman equations were used to extract lifetime values in ${ }^{87} \mathrm{Kr}$ and effective lifetime values in ${ }^{85} \mathrm{Se}$
- Measured lifetime values indicate that both states in both nuclei are short lived and their structures are compatible with core-coupled configurations
- Shell-model calculations using a ${ }^{78} \mathrm{Ni}$ core and $\pi(f p g)-v(s d g h)$ valence space in j-coupling mode predict low-lying states mainly based on core-coupled configurations
> Theoretical and experimental lifetimes are in very good agreement

Perspectives

> Two AGATA@GANIL experiments, a long one (14d) for spectroscopy studies in the same mass region and a plunger one (9 d) for study of $\mathrm{N}=51$ nuclei lifetimes down to ${ }^{83} \mathrm{Ge}$ (3 positions), have been run in April and May

[^0]: J. Duflo and A.P. Zuker, Phys. Rev. C59, R2347 (1999)
 K. Sieja et al., Phys. Rev. C79, 064310 (2009)

