Proton emission - new results and future prospects

- Introduction
- A brief history
- New results
- Future prospects

Robert Page

Proton emission – a simple process

Proton emission as a spectroscopic tool

Limits of observable nuclei

Discovery of direct proton emission: ^{53m}Co

Discovery of direct proton emission: ^{53m}Co

Ground-state proton emission: ¹⁵¹Lu

S. Hofmann et al., ZPA305 (1982) 111

Ground-state proton emission: ¹⁴⁷Tm

O. Klepper et al., ZPA305 (1982) 125

Recoil Mass Separator + DSSD

Proton emitters above Z = 50

B. Blank & M.J.G. Borge, Progress in Particle and Nuclear Physics 60 (2008) 403

Reduced proton-decay widths

Precision Measurements – ¹⁶⁰Re

Precision Measurements – ¹⁵⁶Ta

Precision measurements –¹⁶⁴Ir

R. Carroll et al., PRL112 (2014) 092501

Multiparticle isomer in ¹⁵⁸Ta

R. Carroll et al., PRL112 (2014) 092501

(Another) precision study of ^{53m}Co

^{53m}Co mass measurement

PRL99 (2007) 192501

⁵⁴Zn – P. Ascher et al., PRL107 (2011) 102502

Fragmentation in heavier regions?

B. Blank & M.J.G. Borge, Progress in Particle and Nuclear Physics 60 (2008) 403

Implantation – proton correlations

 ${}^{50}Cr + {}^{92}Mo \rightarrow {}^{135}Tb + p6n$

Argonne FMA

A = 135 only

 $60 \ \mu m$ thick DSSD

P.J. Woods et al., PRC69 (2004) 051302

Proton-decay half-lives

Fragment separator \Rightarrow A & Z

Isomer γ decays or known p for unique A & Z identification

Neutron number N \rightarrow

Known Proton Emitters •

B. Blank & M.J.G. Borge, Progress in Particle and Nuclear Physics 60 (2008) 403

Deformed proton emitters

fragmentation + gas catcher / ISOL decay station → laser spectroscopy → determine spin and deformation!

Proton-decay fine structure

A.A. Sonzogni et al., PRL83 (1999) 1116

M. Karny et al., PRL90 (2003) 012502

In-flight proton emission

A.M. Rogers et al., PRL106 (2011) 252503

Proton emission - future prospects

RIB facilities

- New proton emitters
- Short-lived proton emitters (in-flight)
- Laser spectroscopy? $(\Rightarrow spin, \beta_2)$

Robert Page

- Proton-decay fine structure
- Isomers can throw up surprises!

