

News from ISOLDE and HIE-ISOLDE

ISOLDE today

Beams Setups Physics examples

Future projects

HIE-ISOLDE TSR@ISOLDE MEDICIS Summary

Magdalena Kowalska ISOLDE Physics Coordinator

ISOLDE Facility

- CERN Radioactive Ion Beam facility
- The first ISOL-type Nuclear Phys Lab
 - 1st beam 1967, new facility 1992 @ PSB
 - HIE-ISOLDE upgrade approved in 2010
- Running 8-9 months per year
- 50 experiments per year

- 30-60 keV and MeV/u ion beam
- eV energy spread and small emittance
- Possibility to bunch beam (µs bunches)
- High beam purity (e.g laser ionization)

ISOLDE delivered beams

Users want even more beams and at different energies

ISOLDE present layout

Physics experiments: n-def Hg & Au isotopes

Physics experiments: ¹¹Be βp emission

- ¹¹Be best case to search for βp , $Q_{\beta p} = 280.7$ keV
- Expected B.R. = 10^{-8} , assuming direct decay
- Previous attempt gave unconclusive result with BR = 2.5(25)x10⁻⁶

Need to have good control over background:

HRS: Isobaric, and close-A contaminants, e.g. 11Li, 10Be

Dec 2012 May 2015

RILIS selectivity: Be lasers on/off

A 200 keV 10⁻⁸ proton branch is challenging to detect \rightarrow Detect ¹⁰Be daughter by AMS

- Contaminations measured to be negligible
- B.R. = 8.4(6) x 10⁻⁶ Consistent with previous results
- New Resonance identified in ¹¹B
- More systematic studies in May 2015

Physics experiments: medical isotopes

2012 2014 2015 Soon at MEDICIS ugerd.-therap (\bullet)

U. Koester and PSI team

- Theranostics = therapy and diagnostics together
 - Production of isotopes at ISOLDE
 - Chemical selection and mice treatment in PSI

¹⁴⁹Tb: targeted alpha therapy. 2014 tests establishing safe usability limits, e.g. kidney damage

¹⁵⁵Tb: Very promising results about the effect of Auger electrons for therapy

Upgrades: HIE-ISOLDE project

Increase in beam intensity due to p beam

HIE-ISOLDE Design Study

Intensity Upgrade

- Thermal Studies
- Target Material Studies
- Fluka Simulations
- Cooling & Ventilation renew
- Frontend
- High Voltage
- Beam Dumps

Beam Quality

- Vacuum
- New RFQ Cooler
- REXEBIS Upgrade
- Off-line Separator
- New High Resolution Separator

Big help via **EU ITN called CATHI** – 20 young researchers, part of whom worked on the above topics

Timescale:

Design study: 2011-2014 Implementation: started for some points

HIE-ISOLDE Energy upgrade: SC-LINAC

• Superconducting linac, Installed behind REX linac, Mounted in 3 stages

Physics Autumn 2015 @ 4.3 MeV/u, Spring 2016 5.5 MeV/A

HIE-ISOLDE status

8th

1st Cryomodule being cooled down in ISOLDE since last week

Getting ready for physics in October 2015

Physics beamlines

- In phase I: 2 experimental stations:
 - Fixed: MINIBALL + ancillary detectors: T-REX, SPEDE,
 - Travelling experiments and other setups: REX scattering chamber, beta-NMR setup
- At some point in phase II: 3rd beamline U-shaped, for HELIOS-type spectrometer, and later a 0-degree spectrometer

First experiments at HIE-ISOLDE

HIE-ISOLDE Instrumentation Miniball + T-ReX (upgrade planned) : **COULEX + Transfer** SPEDE: added to Miniball+T-REX Multipurpose reaction chamber Si-detector Absorber Targe CD-detector CORSET chamber for Fusion-fission reactions foil **Helios type Spectrometer** (Hall $\rightarrow @$ TSR) MAYA/ACTAR: resonant scattering + transfer amplificati magnetic zone **Zero-degree spectrometer** ielo segmente plane incoming Devices belonging to collaborations who built them and maintain them beam gas volume Legend: electric

field

existing/commissioned, in preparation, stationed at ISOLDE

Physics with TSR@ISOLDE

April 2015: 3rd TSR@CERN workshop

Advantages

With respect to in-flight storage rings

- High intensity
- Cooler beams
- Much faster

With respect to "direct" beams

- Less background (target, beam dump)
- Improved resolution
- CW beam

Physics programme

- Astrophysics
 Capture, transfer reactions
 ⁷Be half life
- Atomic physics
 Effects on half lives
 Di- electronic recombination
- Nuclear physics

 Nuclear reactions
 Isomeric states
 Halo states
 Fission studies
 Laser spectroscopy
- Neutrino physics

Applications:

Production of medical isotopes for trials (not commercial use) via ISOLDE "dump" protons -> little ISOLDE + chemical preparation

MEDICIS principle

Use protons (~90%) normally lost into the **Beam Dump**

1st isotope production: 2016 UC targets: 2018

> Soon supported via EU ITN network MEDICIS-PROMED

To ISOLDE Saleve side

To ISOLDE Jura side

Summary

- ISOLDE has already provided a variety beams for many physics topics
- Aims to be competitive also in the future, via
 - HIE-ISOLDE upgrade
 - ✓ Increase in ion beam intensity
 - ✓ Increase in energy of post-accelerated beams
 - Spin-offs in applications: MEDICIS
 - Upgrades to existing and new experimental setups
- => All to allow cutting-edge physics

