Search for Two-Proton Radioactivity of ³⁰Ar with In-Flight Decay Spectroscopy

Xiaodong Xu

Justus-Liebig-Universität Giessen and GSI

Outline

Introduction to the two-proton (2p) radioactivity

1

- In-flight decay experiment
- Results on the 2p radioactivity of ¹⁹Mg and tracking the 2p decay of ³⁰Ar
 - Summary

JUSTUS-LIEBIG-

JNIVERSITÄT

GIESSEN

Overview of 2p Radioactivity

• Two-proton emission

- Direct 2p emission predicted for very neutron-deficient nuclei
- Energy conditions

• 2p radioactivity

- True 2p decay in the case of short-lived states
- L. V. Grigorenko et al., Phys. Rev. C 84 021303(R) (2011)
- Discovered at 2002
 - ✓ 2p decay of ⁴⁵Fe
 - ✓ GSI, GANIL

M. Pfützner, et al., Eur. Phys. J. A 14, 279 (2002)

J. Giovinazzo, et al., Phys. Rev. Lett. 89, 102501 (2002) (**4**, **N**) (**4**

2

V. Goldansky, Nucl. Phys. 19, 482 (1960)

JUSTUS-LIEBIG-

UNIVERSITÄT

GIESSEN

What Is 2p Radioactivity?

Direct 2p decay (three-body decay)

2p Radioactivity Landscape

Decay In-Flight Method

Distance from target to decay vertex

- I. Mukha and G. Schrieder, Nucl. Phys. A 690, 280 (2001); I. Mukha, Phys. Atom. Nucl. 66, 1519 (2003)
- ✓ Measurements of in-flight decays of proton-unbound nuclei with ps lifetimes
- ✓ Intensive production of 2p emitters with large-acceptance high energetic beams
- ✓ High precision measurement of decay energy on the basis of small statistics
- ✓ Three-body angular correlations

Discovery of 2p radioactivity of ¹⁹Mg! I. Mukha et al., Phys. Rev. Lett 99, 182501 (2007)

Xiaodong Xu

Overview of the Experiment

Objectives

- Discover the unknown isotope: ³⁰Ar
- Study the 2p decay of ³⁰Ar and ¹⁹Mg (reference nucleus)
- > Deduce spectroscopic information on the low-lying states of 30 Ar

• FRagment Separator (FRS)

Detector Setup at S2 and S4

- ✓ Secondary target: ⁹Be, ~5 g/cm²
- ✓ Time-projection chambers (TPC1, TPC2): tracking secondary beams
- ✓ Silicon micro-strip detector (SSD) array: measuring trajectories of decay products
- ✓ Scintillators (SCI1, SCI2): time-of-flight (TOF) measurement

7

✓ Ionization chamber (MUSIC): energy loss (ΔE) measurement

SSDs for Tracking

• Introduction of the SSD

- ➤ 72 * 41 mm², 0.3 mm thick
- S-side (x): 640 readout strips
- ➢ K-side (y): 384 readout strips
- 16 VA64 chips, 64 strips each
- > SIDEREM

M. Stanoiu et al., Nucl. Inst. Meth. B 266, 4625 (2008)

SSD array for tracking

- Ion hit is creation of electron-hole pairs along the ion track
 a group of neighboring strips "firing" (cluster)
- > Position resolution: usually better than the strip pitch (~100 μ m)
- Precise tracking, vertex determination, energy measurement with high efficiency and acceptance

8

Xiaodong Xu

2015/6/8

• Particle identification by $B\rho - ToF - \Delta E$ method

Measure ²⁸S+p+p Trajectories

 2p decay of ³⁰Ar by tracking ²⁸S+p+p trajectories (triple coincidence)

JUSTUS-LIEBIG-

JNIVERSITÄT

GIESSEN

Identification of Protons

- Simple way to separate the protons from other minimum ionizing particles (e.g., δ electrons)
 - Energy loss in SSDs
 - Less multiple scattering
 - "Straight-line" assumption

SSD 2

Decay Vertices and Proton-HI Angular Correlations

JUSTUS-LIEBIG-UNIVERSITÄT GIESSEN

2015/6/8

Angular correlations from¹⁹Mg -> ¹⁷Ne+p+p
 events ¹⁸⁰

Simulations of 2p Decay of ¹⁹Mg Ground State

Simulations of 2p Decay of Low Lying Excited States of ¹⁹Mg

15

Xiaodong Xu

JUSTUS-LIEBIG-

UNIVERSITÄT GIESSEN

 Angular correlations from ³⁰Ar -> ²⁸S+p+p events

Summary

- In-flight decay experiment @ GSI: Search for 2p radioactivity of unknown nucleus - ³⁰Ar
- Study of the 2p decay of ¹⁹Mg by tracking ¹⁷Ne+p+p trajectories (reference measurement)
- Reconstruction of the 2p decay vertices
- Analyze proton-HI angular correlations both for ¹⁹Mg and for ³⁰Ar
- Simulations of experimental response to the 2p decay of ¹⁹Mg
- Confirm the 2p-decay energy of ¹⁹Mg
- Study of the 2p decay of ³⁰Ar by tracking ²⁸S+p+p trajectories

Acknowledgements

Collaborators

L. Acosta, S. Baraeva, E. Casarejos, W. Dominik, J. Duénas-Díaz,
V. Dunin, J. M. Espino, A. Estrade, F. Farinon, A. Fomichev, H. Geissel,
A. Gorshkov, Z. Janas, G. Kaminski, O. Kiselev, R. Knöbel, S. Krupko,
M. Kuich, A.A. Lis, Yu. A. Litvinov, G. Marquinez-Durán, I. Martel,
C. Mazzocchi, <u>I. Mukha</u>, C. Nociforo, A.K. Ordúz, M. Pfützner, S. Pietri,
M. Pomorski, A. Prochazka, A.M. Sánchez-Benítez, C. Scheidenberger,
H. Simon, B. Sitar, R. Slepnev, M. Stanoiu, P. Strmen, I. Szarka,
M. Takechi, Y. Tanaka, H. Weick, J.S. Winfield

Thanks for your attention!

Xiaodong Xu

