

AHEAD OF ITS TIME FOR 150 YEARS

The study of nuclear structure at the IGISOL-4 facility

Iain Moore

JYFL, Finland

Outline

- General introduction to IGISOL-4
- Recent experiments 2014-2015
 - Laser spectroscopy
 - Post-trap spectroscopy
- Pushing towards more neutron-rich nuclei
 neutron-induced fission
 - New projects - Bose-Einstein Condensate

I.D. Moore, EURORIB'15, June 7-12, 2015

Projectile source

Thin target

The (IG)ISOL method of RIB production

- An ISOL system for ALL elements
- Fast extraction (~ms)
- Relatively low efficiency
- Poor selectivity

Ion guidance through rf sextupole

to experiments

Mass separator

- Ion survival \rightarrow ion guide method (non-selective)
- Neutralization → laser re-ionization (Z selectivity)

I.D. Moore et al., Hyp. Int. 223 (2014) 17

I.D. Moore, EURORIB'15, June 7-12, 2015

Probing nuclear structure via atomic level perturbations - laser spectroscopy

Moving towards heavy elements

- Laser ionization of Pu samples (ng)
- Collinear spectroscopy on ^{244,242,240,239}Pu

JYFLTRAP - purification & measurement

JYFLTRAP review: T. Eronen et al., Eur. Phys. J. A 48 (2012) 46

M. Block, S. Eliseev, S. Kaufmann

Post-trap spectroscopy: IGISOL-3

J. Kurpeta, University of Warsaw (2015)

TASISPEC @IGISOL-4: 53mCo

Proton radioactivity discovered 45 years ago!

JYFL – Lund - GSI collaboration Experiment 1199 using TASISpec: L.G. Sarmiento, D. Rudolph, A. Kankainen et al.

Energy (MeV) 1.59 ± 0.03 Half-life (ms) 247 ± 12 Branching ratio $\approx 1.5 \%$

- Ground state & isomer similar T_{1/2}
- Require JYFLTRAP (Ramsey cleaing)
- Direct measurement of branching ratio with TASISpec

^{53m}Co at JYFLTRAP (April 2015)

 p decay energy determined via JYFLTRAP mass measurements of ⁵³Co, ^{53m}Co and ⁵²Fe

Expect a future TASISpec campaign of measurements at IGISOL

Courtesy of L.G. Sarmiento

IMME for the T=2 quintet at A=52

JYFLTRAP April 2015:

- ⁵²Fe, ^{52m}Fe
- ⁵²Co (T_{1/2}=115(23) ms)
- ^{52m}Co (T_{1/2}=104(11) ms)

A few μb cross section, the lowest at IGISOL

I.D. Moore, EURORIB'15, June 7-12, 2015

- As a result of the Pandemonium, betas and neutrinos are incorrectly estimated in databases
- TAS measurements are very important for decay heat and neutrino summation calculations

Impact of published data from JYFL

Algora et al., PRL 105 (2010) 202501 Dolores Jordan, PhD thesis, 2010

Ratio between 2 antineutrino spectra built with and without the TAS data of ^{102,104,105,106,107}Tc,¹⁰⁵Mo,¹⁰¹Nb

Delayed neutron measurements

- The delayed neutron fraction β_{eff} is a key parameter in the control of reactor power
- Improvement of summation calculations for unusual fuel compositions and/or burnups
- Nuclei close to the r-process path
- Comparison with theoretical βstrength function calculations

BELEN-48 for 1- and 2n emission

• Data acquired for: ^{98,98m,99}Y, ^{135,137}Sb (0.5 cps implantation rate), ¹³⁸Te, ^{138,139,140}I

TRIUMF

FOR 150 YEARS

Fission of ²³⁸U with 25 MeV protons

- Typical isotope yield at IGISOL-4 switchyard, 10 μ A beam intensity

Calculations by Valery Rubchenya

Towards n-induced fission at IGISOL

Characterising the neutron flux

^{135m}Cs Bose-Einstein Condensation

• Coherent sample of ultra-cold Cs atoms produced in fission

EOP 150 VEADS

⁸⁷Rb hybrid ODT

Cs multi-isotopes ODT (work in progress)

Many-body nuclear effects mediated by BEC

F. Renzoni L. Marmugi

Summary and Outlook

- IGISOL-4 has been fully operational since 2014
 - light ion & fission, heavy-ion reactions (summer 2015)
- Collinear laser spectroscopy, post-trap spectroscopy, decay spectroscopy, mass measurements
- Infrastructure investments: MR-TOF-MS, PI-ICR, cw Matisse laser
- Submitted infrastructure requests: Upgrade of lasers, MARA-LEB
- Cone trap developments (Manchester)
- RF hot cavity (towards ⁹⁴Ag)
- Cryocooler and IGQMS facility
- ²⁵²Cf source
- More beam time for longer and more complex experiments.
- New projects

IGISOL team

A. Jokinen, L. Canete, T. Eronen, D. Gorelov, J. Hakala, A. Kankainen,
 V. Kolhinen, J. Kopponen, I. Murray, H. Penttilä, I. Pohjalainen,
 J. Reinikainen, S. Rinta-Antila, A. Voss

Contributing material

A. Algora, B. Cheal, J. Kurpeta, L. Marmugiu, L.G. Sarmiento, J.L. Tain

https://www.jyu.fi/fysiikka/en/research/accelerator/igisol