

Gianfranco Prete SPES Project leader

SPES Strategy

Research and Production of Radio-Isotopes for Nuclear Medicine

Accelerator based neutron source (Proton and Neutron Facility for Applied Physics)

SPES layout

MAIN TENDERS

SPES Facility Layout

New infrastructure for:

- cyclotron
- RIB (Radioactive Ion Beam)
- application facility

Preparing the Scientific Activities : SPES beam intensities after re-acceleration (q⁺)

https://web.infn.it/spes/images/NEW_SITE/PDF/SPES_Beam_Tables SPES 1day Workshop 20-21 April 2015

Energy from SPES Post-Accelerator as function of A/q

Preliminary results from alpi performances with 2 cavities as margin, Low Beta=5 MV/m, Medium Beta=4.3 MV/m, High Beta=5.5 MV/m

(M. Comunian)

Physics Domain with RIB

Nuclear Physics and Astrophysics

Experiments at SPES

Nuclear Physics and Astrophysics Exploiting the ALPI superconductive LINAC to supply beams at 10A MeV with Surface ion source \rightarrow Rb, Cs First beams Low current on target (5 microA) low energy experiments without reacceleration transfer reactions gamma spectroscopy new instrumentation TIME LINE **Driver Commissioning** 1) - 2015: Delivery of infrastructure - 2015-2016: First sub-systems 2) RIB Operational->: 40 MeV on target INTER **2017** Incl. = $5 \mu A$, SiC (13 mm); low energy - **2018** I > 5 μ A, UCx – SiC (40 mm); low energy - **2019** I= 150 μ A, UCx (40 mm); reacceleration

Multinucleon Transfer Reactions

Neutron-rich Radioactive Beams & Transfer Reactions a tool to investigate nuclei far from stability

beams of most the transfer flux feeds neutron pick-up & proton stripping, with the most ⁴⁰Ar neutron rich the stripping & neutron proton pick-up channels start to have a significant vield. With even more neutron rich beams the vields in the stripping & pick-up directions (both for neutrons and protons) become **comparable**.

Study of NN correlations with neutron-rich nuclei \rightarrow pairing force \rightarrow modified with neutron/proton excess

SPES

exotic beams for science

Beam ¹³²Xe ¹⁴⁴Xe

r-process nuclei: β -decay and isomer spectroscopy

di Fisica Nucleare

Importance of nuclear deformation for r-process:

Experimental cases @SPES – S. Leoni et al. INFN Uni Milan (I) – INP Kracow (PI)

An important region which can be accessed is the neutron-rich region beyond the shell closure at N=50, in particular the Ge-Br isotopes, which are expected to be very close to the r-process path

Inelastic scattering, transfer reactions

With transfer we can probe:

• occupancy of single-particle (shell model) orbitals in the original nucleus A ground state

or distribution of s.p. strength in all final states of A–1 or A+1 nucleus that is, can add a nucleon to the original nucleus, e.g. by (d,p)

- identify the angular momentum of the transferred nucleon
- hence, identify the s.p. level energies in A–1 or A+1 nuclei produced from even-even nuclei

• identify the s.p. purity of coupled states in A–1 or A+1 nuclei produced from odd nuclei

and the scattered particle is detected, with most yield being at small centre-of-mass angles

Time-Projection Chamber (TPC)

detection gas is the target

- Large target thickness and still good resolution
- Low detection threshold
- Large solid angle and High efficiency
- Electrons, produced by ionization, drift to an amplification zone
- Signals collected on a segmented "pad" plane⇒2D-image of the track
- 3rd dimension from the drift time of the electrons

In particular: Shell Structure in the vicinity of ¹³²Sn with an active target

135Te 19.0 S

\$-: 100.00%

1345b 0.78 \$

β+: 100.00%

1465

B-: 100.00% B-n: 6.30%

131Cd 68 MS

8-: 100.00% 8-1: 3.50%

89

1335b 2.34 M

-: 100.000 -Bs 2.000

130Cd 162 MS

β-: 100.00 β-n: 3.50

82

N=82

136Te 17.63 5

β- 100.00% β-π.1.31%

1355b 1.679 5

6-: 100.00

8-: 100.00% 8-n: 17.00%

8-: 100.00% 8-h: 85.00%

132Cd 97 MS

8-100.00% 8-n:60.00%

84

Figure B1.1 - 2. (left) Q-value spectrum for the ¹³²Sn(d,p)¹³³Sn reaction at 54° in the center of mass reference frame. (right) Comparison between Sn and Pb 'signs' of magicity: two neutron separation energies (a) and first 2' state energies (b) as a function of the number of neutrons beyond the shell closure. (c) and (d) represent the single particle states above the magic numbers N=126 and N=82 respectively. The numbers on the right are the mesured spectroscopic factors. Adapted from [16].

139Te >150 NS

> β-n β-

1385b 350 MS

β-: 100.00% β-в: 72.00%

1375h 190 MS

8-100.00% 8-n: 58.00%

138Te 1.45

β-: 100.000 β-π. 6.305

1375b 492 MS

B-100.00%

1365n 0.25 S

8-: 100.00% 8-1: 30.00%

92 MS

β-: 100.00 β-n

137Te 2.49 S

8-x 2.99%

1365b 0.923 \$

β-: 100.00% β-h 16.30%

1355n 530 MS

8-: 100.00% 8-in: 21.00%

> 134in 140 MS

8-: 100.00% 8-n: 65.00%

133Cd 57 MS

β-: 100.007 β-n

85

140Te >300 NS

> 8-n 8-

1395b 93 MS

₿-: 100.00% ₿-x: 90.00%

1385n >408 NS

> B-n B-

141Te >150 NS

> 8-11 8-

1405b

>407 NS

8-2n 8-n 142Te

Figure B1.1 - 5. Q-value spectrum for the 82 Ga(d,p) 83 Ge at 4 AMeV on CD₂ target as measured in [22]

(pected beam intensities @ 10 AMeV

SPES full power

(200 µA p beam)

3.1 107

2.8 10⁶

4.9 10⁵

6.2 10³

0.9 10²

SPES 1st day

(5 µA p beam)

7.8 10⁵

7.0 10⁴

1.2 10⁴

1.6 10²

SPES at low current

132Sn

133Sn

134Sn

135Sn

¹³⁶Sn

Fig.1 Analogy between f7/2 and p3/2 evolution of binding energies in the known Ca isotopes to what could be expected for the Sn isotopes approaching N=90. Figure adapted from ¹³.

T. Marchi, R. Raabe, MagicTin EU-MSCA proposal – Approved

In preparation for this SPES activity:

Commissioning experiment with <u>low-intensity</u>¹²⁰Sn beam at ALPI energies (!10⁶pps)

Accelerator Division – TAP Users meeting

20-21 April 2015 Milano

Outcome 1-day Workshop on the Physics at SPES with non re-accelerated beams", Milano on April 20th-21st 2015.

with non re-accelerated beams"

SPES one-day Workshop "Physics at SPES

* Good response: 65 registered participants coming from:

Italy, CERN, Riken-Japan, Oak Ridge-USA, TRIUMF-Canada, Bordeaux-France, Orsay-France, Giessen-Germany, Spain, Greece.

18 oral presentations, some based on LOI presented in May 2014

- Beta decay spectroscopy of fission fragments
- Beta decay studies using the gamma Total Absorption Technique
- Neutron Decay Spectroscopy
- Trap assisted measurements

Instrumentation

Tape station surrounded by beta-detectors and a number of ancillary detectors:

high-resolution HPGE detectors in a closely packed configuration allow for detailed decay studies, while the addition of neutron detectors allow to firmly establish the beta-delayed neutron branch. **Traps** coupled to laser spectroscopy, spin polarization, beta-NMR. **Multi Reflection TOF** for high precision mass measurement.

SPES Instrumentation

Diagnostics for SPES: 2 tape stations to characterize the RiB

Beta decay station as a permanent and flexible setup

• Tape station + β detector

LNL, Dec 4 - 5 2014

• Coupling to HPGe, LaBr3, neutron detectors etc...

Moving the tape, the residual activity due to the long lived isotopes is minimized.

Fisica Nucleare

T. Marchi

The GALILEO project

- GALILEO a new gamma–ray array spectroscopy
- takes advantage of the developments made for AGATA
 - preamplifiers
 - digital sampling
 - preprocessing
 - DAQ
- uses the EUROBALL cluster detectors capsules
 - improved efficiency
 - development of a new cluster detector with 3 capsules

Phase 1: 40 GASP detectors

e_{ph}~8% P/T~50%

Detector configuration

• 30 GASP detectors @ 22.5cm

• 10 triple cluster detectors @ 24 cm

GALILEO installation at LNL

Installed: 25 GASP detectors Neutron Wall (from NeutronWall Collaboration) EUCLIDES light particle detector array Commissioning concluded, ready for run. 10 proposals submitted to LNL-PAC (June,30)

Present stable beam campaign

Shape coexistence
N~Z T=0 coherent pairing
sospin symmetry breaking
Octupolar deformation

Future RIB campaign

Shape evolution around
 Ni and Sn via direct
 reaction and Coulex
 Shape deformation
 High Energy excitation
 Astrophysics

Gamma spectroscopy with Galileo and ancillaries

Letters of Intent 2nd SPES workshop, 2014

- Exploring the Z=32 triaxiality corridor towards N=50 via safe Coulex (M.Zielinska)
- Spectroscopy studies around 78Ni and beyond N = 50 via transfer and Coulomb excitation reactions. (J.J. Valiente-Dobon, A. Gadea, R. Orlandi, E. Clement)
- Nuclear magicity at Z 50 N 82. Neutron capture cross section via the surrogate method. (D.Mengoni, G.deAngelis)
- Transfer reaction measurements for r-process nucleosynthesis (S.D.Pain)
- Structure of Sb nuclei around 132Sn as a testing ground for realistic shell model interactions. (B. Szpak)
- Low-lying dipole excitation via nuclear probes in exotic nuclei. (E.Lanza, D.Mengoni, F.C.L.Crespi)
- Search for Exotic-Octupole deformation effects in n-rich Ce-Xe-Ba Nuclei. (E.Sahin)
- Coulomb Excitation measurements of Radioactive Ions: N82 and Z50 (B.Melon)
- Shape coexistence in Kr isotopes towards N=60 (V.Modamio)
- The Onset of deformation in the n-rich Y isotopes. (M.Kmiecik)

GASPARD-HYDE-TRACE Workshop 2015

25-27 March 2015 Department of Physics and Astronomy -University of Padova Europe/Rome timezope

	Accurate CACRARR UNDER TRACE (CUT) We do have to accurate the observe of the cut
Overview	collaboration.
Timetable	The agenda of the workshop will comprise:
	 Status and progress of the GHT projects
Registration	 Simulation (detectors, signals, etc.) New detectors (silicon, etc.)
Registration Form	Pulse Shape Analysis (technique and experimental results) Electronics & DAO
List of registrants	MUGAST progresses Physics General discussion
Organizing Committee	In the spirit of the workshop an effort will be devoted to promote synergies and exchange of information among groups developing detectors, electronics and simulation tools for state-of-the-art silicon detectors in low-energy nuclear physics.
Travel Information	After Barcelona (2010), Huelva (2011), Padova (2012), Paris (2014), the fifth edition is held this year at the
Transfer from and to the	University of Padova, Department of Physics and Astronomy.

the

 4π -LCP & Fragments

PRISMA: a large acceptance magnetic spectrometer $\Omega \approx 80 \text{ msr};$ $B\rho_{max} = 1.2 \text{ Tm}$ ΔA/A ~ 1/200

INFN

GARFIELD

0,0

Drift Chambers

RIPEN Neutron Array

SPIDER LCP Si-strip detector

SPES Instrumentation

/ Istituto Nazionale di Fisica Nucleare

FAZIA: LCP & fragments detection

AGATA : innovative γ -rays tracking array)

COMPLEMENTARY Activity (LNL-LNS)

- Tagging & Tracking
- New Ancillary detectors developements
- Training & experiment preparation

PARIS (High Energy γ-ray Detector Array)

NEDA (NEutron Detector Array)

charged particle e⁻ 28 cm 28 cm 4 detectors 4 detectors 5 e⁻ 20 cm 5 e⁻ 28 cm 5 e⁻

ACTAR :(Active Target Detector)

Technical highlights: the production target

SPES DIRECT TARGET CONCEPT to operate with 8 kW proton beam

- Direct Target carefully designed to reach 10¹³ fissions/s with 8 kW proton beam (thermo-mechanical considerations);
- In beam power test performed at iThemba labs on May 2014 (SiC target, 4 kW p beam, 1200° C);
- Prototype under operation.
- Fully developed **front-end** following ISOLDE design;

(A. Andrighetto et al.)

SPES ISOL system

System under operation for source commissioning. Updated version, under construction.

SPES new LASER Laboratory @ LNL

Since March 2013 a new laser laboratory is operational at LNL. At present a Nd:YAG "Quantel" Laser is used for ablation studies; the new all solid state tunable laser system for the SPES project will be tested .

November 2014 Factory Acceptance Test

Cyclotron assembled and operated with 700 µA at 1MeV

Main Parameters

Accelerator Type	Cyclotron AVF 4 sectors				
Particle	Protons (H ⁻ accelerated)				
Energy	Variable within 30-70 MeV				
Max Current Accelerated	750 μA (52 kW max beam power)				
Available Beams	2 beams at the same energy (upgrade to different energies)				
Max Magnetic Field	1.6 Tesla				
RF frequency	56 MHz, 4 th harmonic mode				
lon Source	Multicusp H ⁻ I=15 mA, Axial Injection				
Dimensions	Φ=4.5 m, h=1.5 m				
Weight	150 tons				

SPES: Cyclotron Schedule (2013-2015)

Transport Line to SPES RFQ

Exotic Beam reacceleration

Collaboration with LPSC (Grenoble) for the SPES Charge Breeder

Validation of the SPES-CB

LPSC-Grenoble April 4th, 2015

Charge Breeder Beams:

✓ Global capture up to 90%!

		EFFICIENCY* [%]				
ION	Q	SPES req	Best LPSC	SPES-CB		
Cs	26	≥ 5	8,6	11,7		
Xe	20	≥ 10	10,9	11,2		
Rb	19	≥ 5	6,5	7,8		
Ar	8	≥ 10	16,2	15,2		

*results obtained for the same 1+ injected current

High Resolution Mass Separator & Beam Cooler

Approaching Mass resolution: 1/40000 !

Synergies with LNS Collaboration SPES – CENBG Bordeaux

Scaled-up version of the separator designed for CARIBU Mass resolution: 1/40000

Beam Cooler to match the HRMS input requirements

COOLBEAM experiment financed by INFN-CSN5, 2012→2015 Collaboration: LNL-LNS, Milan

High Resolution Mass Separator

L.Calabretta, M.Comunian, A.Russo, L.Bellan

Exotic Beam reacceleration: room temperature RFQ

Mechanical layout of the RFQ

Physics design

100% duty cycle

High power RF Coupler 200kW

- Energy 5.7 \rightarrow 727.3 [β =0.0395] KeV/A (A/q=7)
- Frequency 80 MHz
- Beam transmission >95%, low RMS longitudinal . emittance at output: 0.15 ns*keV/u.
- Length 695 cm (7 modules) intervane voltage . 63.8 - 85.8 kV
- RF power (four vanes) 100 kW.
- Mechanical design and realization, taking . advantage of IFMIF experience (LNL, INFN Pd, Bo, To).

E. Fagotti, A. Pisent

1⁺ Stable Source

SPES general planning

	2012	2013	2014	2015		2016	2017	2018	2019
Authorization to operate and safety	UCx 5microA								
ISOL Target-Ion Sources development									
ISOL Targets construction and installation									
ISOL on-line commissioning									
Building Construction	Executive project	raw buil construc							
Cyclotron Construction & commissioning			Cyclotr at L NL	on					
RFQ development and Alpi up-grade									
Design of RIB transport & selection (HRMS, Charge Breeder, Beam Cooler)									
Construction and Installation of RIBs transfer lines , CB and spectrometers									
Stepwise commissioning and first exotic beam (2018), HRMS in 2019									

An opportunity for the European nuclear physics community

A distribute laboratory for radioactive beams:

- More exotic beams available
- Coordination of competences
 to face technologic challengis of
 EURISOL
- Joint effort to manage the activity at European level

□ SPES fully support the initiative

TANKS for ATTENTION