Structure of low-lying states in ¹⁴⁰Sm studied by Coulomb excitation

M. Klintefjord^{a*}, K. Hadyńska-Klek^a, A. Görgen^a, T. Abraham^d, C. Bauer^e, F.L. Bello Garrote^a, S. Bönig^e, A. Damyanova^f, J.-P. Delaroche^p, Ch. Droste^c, F. Giacoppo^a, M. Girod^p, E. Grodner^c, P. Hoff^g, M. Kisieliński^d, M. Komorowska^{c,d}, W. Korten^h, M. Kowalczyk^d, J. Kownacki^{d,i}, A.C. Larsen^a, J. Libert^p, R. Lutterⁱ, T. Marchlewski^{c,d}, H. Naidia^q, P. Napjorkowski^d, and F. Nowacki^q, J. Pakarinen^k, E. Rapisarda^{1,m}, P. Reiterⁿ, T. Renstrøm^a, J. Samorajczyk^b, B. Siebeckⁿ, S. Siem^a, J. Srebrny^d, A. Stolarz^d, R. Szenborn^{c,d}, P. Thöleⁿ, T. Tornyi^a, A. Tucholski^d, G.M. Tveten^a, P. Van Duppen¹, M.J Vermeulen^o, N. Warrⁿ, H. De Witte¹, M. Zielińska^h

^aDepartment of Physics, University of Oslo, N-0316 Oslo, Norway ^dHeavy Ion Laboratory, University of Warsaw, 02-093 Warsaw, Poland Institut für Kernphysik, Technische Universität Darmstadt, Darmstadt D-64289, Germany University of Geneva, Bd du Pont-d'Arve 40, 1211 Geneve, Switzerland ^gDepartment of Chemistry, University of Oslo, N-0316 Oslo, Norway ^hCEA Saclay, IRFU, SPHN, F-91191 Gif-sur-Yvette, France ^jTechnische Universität München, Garching D-85748, Germany Department of Physics, University of Jyväskylä, Jyväskylä FI-40014, Finland Instituut voor Kern- en Stralingsfysica, KU Leuven, Leuven B-3001, Belgium ^mCERN-ISOLDE, PH Department, CERN, CH-1211 Geneva 23, Switzerland ⁿInstitut für Kernphysik, Universität zu Köln, Köln D-50937, Germany ^oDepartment of Physics, University of York, York YO10 5DD, UK PCEA, DAM, DIF, Bruveres-le-Chatel, France ⁹IPHC, CNRS-IN2P3 and Universite de Strasbourg, France

June 8, 2015

*malin.klintefjord@fys.uio.no

Outline

- ▶ ¹⁴⁰Sm- Why do we care?
- The Coloumb excitation experiment
- Spectra
- GOSIA2 calculations and results
- Angular correlations
- Interpretation
- Future

$^{140}_{62}$ Sm, How does collectivity evolve?

Beyond mean field calculations of nuclear shape.

Shape coexistence above Isomeric states

- Lifetimes of low excited states unknown, due to isomeric 10^+ states of $\pi(h_{11/2})^2$ and $\nu(h_{11/2})^{-2}$.
- Low lying 0^+_2 ..

Goal

Obtain B(E2) and Q, using normalization to target excitation.

Coulomb excitation experiment

- Coulomb excitation experiment
- ▶ ¹⁴⁰Sm + ⁹⁴Mo

- Coulomb excitation experiment
- ▶ ¹⁴⁰Sm + ⁹⁴Mo
- ¹⁴⁰Sm obtained at ISOLDE with Resonant Laser Ionization

- Coulomb excitation experiment
- ▶ ¹⁴⁰Sm + ⁹⁴Mo
- ▶ ¹⁴⁰Sm obtained at ISOLDE with Resonant Laser Ionization
- Beam energy: 2.85 MeV/nucleon and Intensity: 2.10⁵ particles/s

- Coulomb excitation experiment
- ▶ ¹⁴⁰Sm + ⁹⁴Mo
- ▶ ¹⁴⁰Sm obtained at ISOLDE with Resonant Laser Ionization
- Beam energy: 2.85 MeV/nucleon and Intensity: 2.10⁵ particles/s
- γ -photons detected in MINIBALL

- Coulomb excitation experiment
- ▶ ¹⁴⁰Sm + ⁹⁴Mo
- ¹⁴⁰Sm obtained at ISOLDE with Resonant Laser Ionization
- Beam energy: 2.85 MeV/nucleon and Intensity: 2.10⁵ particles/s
- γ -photons detected in MINIBALL
- Particles detected in circular DSSSD. Angular range: [20 58] deg

Spectra

¹⁴⁰Sm Doppler correction

Angular binning

< □ ▶ < ⊡ ▶ < 글 ▶ < ⊒ ▶

GOSIA results

Table: Matrix elements in ¹⁴⁰Sm with correlatederrors obtained with target normalization approach.

li	lf	$\langle I_f M(E2) I_i \rangle$	$B(E2;I_i \rightarrow I_f$)
		eb	e^2b^2	W.U.
2^+_1	0^{+}_{1}	$1.12^{+0.05}_{-0.05}$	$0.25\substack{+0.02\\-0.02}$	58^{+5}_{-5}
- 1	- 1			
2^+_1	2^+_1	$-0.18^{+0.43}_{-0.29}$	ノ -	-
4_{1}^{+}	2^+_1	$1.64^{+0.05}_{-0.05}$	$0.30\substack{+0.02\\-0.02}$	70^{+5}_{-5}
		10.07	10.15	1.25
(0^+_2)	$)2_{1}^{+}$	$1.01^{+0.07}_{-0.07}$	$1.02^{+0.15}_{-0.15}$	236^{+35}_{-35}

GOSIA2 scan over χ^2

Lifetime measurement

The Lifetime of the 2_1^+ was measured independently, using Recoil Distance Doppler shifted method, at HIL, Warsaw. $^{124}\text{Te}(^{20}\text{Ne},4n)^{140}\text{Sm}$. 9.0(7) ps

Analysis by Frank Bello, University of Oslo.

Result

Table: Matrix elements in ¹⁴⁰Sm with correlated errors obtained with lifetime normalization approach.

Investigate tentatively assigned 0⁺

 β -decay experiment performed at HIL, Warsaw. ¹¹²Cd(³²S,p3n)¹⁴⁰Eu. Result from angular correlation.

Analysis by Malin Klintefjord, University of Oslo and Justyna Samorajczyk, University of Lodz.

Before

After

Result

Table: Matrix elements and B(E_2 ; $I_i \rightarrow I_f$) in ¹⁴⁰Sm with correlated errors obtained assuming (2^+_2) state at 990keV.

Interpretation

Davydov-Filippov model with $\gamma = 30^{o}$

イロト イジト イヨト イヨト

Interpretation

Davydov-Filippov model with $\gamma = 30^o$

Experimentally hard to distinguish from γ -soft.

Constrained Hartree-Fock Bogolibov with Gogny D1S interaction

Soft in β and γ .

Results from M.Girod and J.-P.Delaroche, CEA Bruyeres-le-Chatel (priv. comm.) Mapped on 5-dimensional collective Hamiltonian No free parameters J.-P. Delaroche et al. PRC 81, 014303 (2010) Interpretation

Solving Schrödinger eq for square well gives an analytic solution for the E(5) critical point.

Interpretation

 140 Sm is as good example for E(5) as any other nucleus. It has been missed so far because of wrong assignment for 990 keV excited state.

Sm isotopes

Conclusions

- Coulomb excitation ¹⁴⁰Sm + ⁹⁴Mo at CERN, ISOLDE
- Lifetime investigation at HIL, Warsaw
- Spin-state assignment from angular correlation at HIL, Warsaw
- Behavior of typical transitional nucleus
- Well described by constrained HFB calculations, Gogny D1S interaction
- Good example for E(5) symmetry
- Future: accepted proposal at HIE ISOLDE

Thank you for your attention!

・ロト・(四ト・(三ト・(三ト

Backup

< □ ► < □ ► < Ξ ► < Ξ ►</p>

Backup

Arias, J. M. Physical Review C, vol. 63, Issue 3, id. 034308

< > > < > > < \arrow > < \arrow > < \arrow > < \arrow \arrow < \arrow > < \arrow \arr