Overview of Rare Isotope Beam Facilities in Asia

Sun Chan JEONG RISP, IBS on behalf of Asia Nuclear Physics Association EURORIB'15 JUNE 7th – 12th , 2015 @ HOHENRODA / GERMANY

Major RIB Facility in the Asia & Oceania

Activities at RIB facilities are growing rapidly in Asian countries.

RIBF(RIKEN, Japan)
 CRIB (CNS, Japan)
 KISS (KEK, Japan)
 HIRFL(IMP, China)
 BRIF(CIAE, China)
 IUAC (VECC, India)
 Under successful operation

CRAON

Major RIB Facility in the Asia & Oceania

Activities at RIB facilities are growing rapidly in Asian countries.

RIBF(RIKEN, Japan) CRIB (CNS, Japan) KISS (KEK, Japan) HIRFL(IMP, China) BRIF(CIAE, China) IUAC (India) are being successfully operated.

The main focus of presentation will be on four RIB facilities under construction in Asia/Oceania :

- RAON (IBS/RISP, Korea)
- HIAF (IMP, China)
- ANURIB (VECC, India)
- SOLEROO (ANU, Australia)

CRAON

* RAON

- Deajeon
- ✤ Institute for Basic Science /
 - Rare Isotope Science Project (IBS/RISP)

heavy ion accelerator complex for rare isotope science research in Korea.

* RAON: Pure Korean word meaning Delightful, Joyful, Happy

Budget: US\$ 1.44 B (1 B\$~1T Won)

- accelerators and experimental apparatus : 0.46 B\$

- civil engineering & conventional facilities : 0.98 B\$ (incl. construction site purchase)

Period: 2011.12 ~ 2021.12 (10.1 years)

Layout of RAON

Injector System

Superconducting Linac (SCL)

RAON SCL Characteristics

- ✤ Linac baseline frequency is 81.25MHz
- Niobium Cavities operating at 2K
- Focusing by normal conducting quad doublets
- Optimized geometric beta of SC cavities (0.047, 0.12, 0.30, 0.51)
- Employs larger aperture to reduce beam loss (4cm and 5 cm aperture)

SC cavity development

CRAON

In-Flight separator

ISOL System

ISOL Driver: 35-70 MeV, H⁻ 1 mA cyclotron

The layout still evolving

UCx target: 10 kW (Dia. 5 cm, 1.3 mm 19 disks)

Test stand for target ion source, frontend mass separator on HV platform

Experimental Facilities at RAON

Field	Facility	Exp. hall	Characteristics	Remark		
	Recoil spectrometer – KOBRA	Low E	High resolution, Large acceptance function, RIBs production with in-flight method	Mass resolution; ~ 200 Large acceptance; ~ 80 msr		
Pure science	Large acceptance Spectrometer – LAMPS(L&H)	Low & High E (I)	High efficiency for charged particle, n, and γ	High E: solenoid spectrometer (TPC; 3π Sr), neutron wall, dipole spectrometer (upgrade) Low E: Si-CsI array, neutron array		
	High resolution Spectrometer	High E (I)	High resolution, Precise scattering Measurement to the focal plan, Rotatable	Momentum resolution ; 1.5x10 ⁴		
	Zero-degree Spectrometer	High E (I)	Charge and mass separation, Good mass resolution	Momentum resolution ; 1200~ 4100		
	High precession mass measurement system	Ultra low E	Penning trap, Multi-reflection Time of flight	Mass resolution ; 10 ⁻⁵ ~ 10 ⁻⁸		
	Collinear laser Spectroscopy	Ultra low E	High Resolution Laser Spectroscopy System	Spectral resolution ; ≤ 100 MHz		
Applied science	β-NMR/μ-SR	Low / High E (II)	High intensity ⁸ Li & muon production	⁸ Li & muon > 10 ⁸ pps		
	Bio-medical facility	Low & High E (II)	Irradiation system for stable & radio ion beam	Uniformity ; < 5%		
	Neutron science Facility	Low E	Fast neutron generation & measurement system of fission cross section	Uncertainty ; < a few %		

KOBRA (KOrea Broad acceptance Recoil spectrometer and Apparatus)

Main facility for nuclear structure and nuclear astrophysics studies with low-energy stable and rare isotope beams

12

• Main Research Subject :

- 1) Nuclear structure of exotic nuclei near the drip lines
- 2) Astrophysically important nuclear reactions
- 3) Rare event study Super Heavy Element (SHE), New isotopes
- 4) Nuclear phyiscs with polarized beam/target etc

- RIBs production via low-E in-flight method by multi nucleon transfer reaction (ex. ⁴⁴Ti)

- Main Specification

Maximum magnetic rigidity (Tm)	~3
Mass resolution $(m/\Delta m)$ @ stage 1	~700
Dispersion (cm/%) @ stage 1	4.2
Momentum acceptance (%) @ stage 1	±4
Angular acceptance (mrad) @ stage 2	40 (H) and 200 (V)

- Ion optics calculation was done using K-trace code (ray tracing)
- Rotation of 'stage 2', variable position of Q-magnets in 'stage 2' are under consideration
- Technical design is in progress
- Design of associate equipment

LAMPS (Large Acceptance Multi-Purpose Spectrometer)

RAON

80 MDI interaction Main facility for nuclear matter and nuclear reaction studies 60 with intermediate energy stable and rare isotope beams E_{sym} (p) (MeV) **Main Research Subject:** Study of nuclear symmetry energy at supra-saturation density via heavy-ion collision experiment x=1 20 Asy-soft L.W. Chen et al., PRL 94, 032701 (2005) 0.0 0.5 1.0 1.5 2.0 ρ/ρ_0 **Optics calculation is on going for** Focal-plane detector reducing the length of focal plane Beam Energy: up to 250 MeV/u Target Si-Csl **Solenoid Spectrometer** - Max. 1T solenoid magnet - TPC (~ 3π sr acceptance, charged particle tracking) - Scintillation counter (trigger & ToF) TPC - Si-CsI (measure heavy fragment using ΔE -E method) Dipole Neutron **Dipole Spectrometer** Detector Quadrupole - Rotatable dipole magnet and Ζ Arrav Scintillation focal plane detector 15 m away from target Solenoid Counter (capable to study nuclear reaction) **Neutron Wall (neutron tracking)** Solenoid Spectrometer Dipole Spectrometer **Not Scaled** (rotatable, $\Delta p = \pm 20\%$, acceptance ≥ 50 msr, Focal plane < 1 m)

Heavy Ion Research Facility in Lanzhou (HIRFL) Lanzhou

- Institute of Modern Physics (IMP)
- ✤ Beijing Rare Isotope Facility (BRIF)-II
- ✤ Beijing
- China Institute of Atomic Energy (CIAE)

Two major RIB facilities in China

Beijing BRIF, BRIF II , Low E HI, RIB, 2014

Lanzhou, HIRFL Med E HI, RIB, 2008

Status of BRIFII

First beam in 2014!!!

Magnet design and fabrication

2015, May 4, ISOL separated ³⁸K RI delivered

Heavy Ion Research Facility in Lanzhou (HIRFL)

National Laboratory of Heavy Ion Accelerator in Lanzhou(1991)

Main Setups

About 20 apparatuses for heavy-ion physics and applications

HIRFL statistics

Status of HIRFL

IMP

Typical beam

$p \sim U$, Total accelerated elements: 21

1 IA IA	-								CS	SR	:	9	io	ns	;				Cy	/C	lot	ro	ns	5: 1	12	io	ns	5					18 VII 0	}
1 00794 1 氢. H 0 0899 Hydrogen	2 11. 11.	2 A A	_			At ()indic	omic v ates lo lived is	veigh ngest- sotope	t -		vi V	8 A '	_		Grou Class	p ificati	on						1	3 B A	1 IV IV	4 /B /A	1 V V	5 18 14	1 VI VI	6 IB IA	17 VII VII	7 B A	4.00260 氦 0.1787 Helium	2 He
6.941 3 锂 Li ^{0.53} Lithium	9.01210 彼 1.85 Berylli	Be		(Dens Gas-(2'	ity (3) 73.151	00K) (5,1atm	g/cm³) i)(g/L) Name	<u> </u>	<u> </u>	55.847 铁 7.86 Iron	26 Fe			Atom numb Symb	ic er ol							10.811 7 2.535 Boron	5 B	12.011 14 82 2.82 2.62	6 C	14.006 氨。 1.251 Nitrog	74 7 N en	15.9994 氧。 1.426 Oxyge	8 0 1	18.9984 氟 1.696 Fhiorin	9 F	20.1797 気 0.901 Neon	10 Ne
22.9898 11 钠 Na 0.9712 Sodium	24.3050 侯 1.741 Magne	0 12 M g sium	** ==	B B	4 IV IV	A B		5 /A /B		6 1A 1B	v	7 11A 11B	-	8	v	9 IIA 1II	_	10]	1 IE IE	1 8 8	1	I2 B B	26.981: 铝 2.70 Alumi	s 13 Al	28.085: 硅 2.33 Silicon	s 14 Si	30.973 磷 1.82 Phospl	8 15 P	32.066 成 2.07 Sulfur	16 S	35.4527 氣 3.17 Chlorin	17 CI	39,948 氩 1.784 Argon	18 Ar
39.0983 19 钾 K 0.86 Potassium	40.078 钙 1.55 Calcin	20 Ca	44.9559 钪 3.0 Scandi	21 Sc	47.88 钛 4.50 Titanin	22 Ti	50.941 钥 5.8 Vanad	s 23 V ium	51.996 铬 7.19 Chron	n 24 Cr	54.938 猛 7.43 Mang	n 25 Mn	55.847 铁 7.86 Iron	26 Fe	58.933 估 8.90 Cobali	2 27 Co	58.69 住 8.90 Nicke	28 Ni	63.546 铜 8.96 Coppe	29 Cu	65.39 锌 7.14 Zine	30 Zn	69.723 镓 5.91 Galliur	31 Ga "	72.61 诸 5.32 Germa	32 Ge	74.921(神 5.72 Arseni	6 33 As	78.96 70 4.80 Selenio	34 Se	79.904 漠 3.12 Bromin	35 Br	83,80 気 3,74 Krypto	36 Kr 1
85.4678 37 1 .53 Rubidium	87.62 钯 2.6 Stronti	38 Sr	88.9059 纪 4.5 Yttrin	, 39 Y	91.224 倍 6.49 Zircon	40 Zr	92.906 铌 8.55 Niobix	₄ 41 Nb	95.94 钼 10.2 Molvt	42 Mo m	(97.90) 得 11.5 Techr	7) 43 Tc	101.07 钌 12.2 Ruthe	44 Ru	102.90 佬 12.4 Rhodi	6 45 Rh	106.42 钯 12.0 Pallad	2 46 Pd	107.868 银 10.5 Silver	47 Ag	112.41 镉 8.648 Cadmi	1 48 Cd	114.82 铟 7.31 Indian	49 In	118.71 <mark>物</mark> 73日	50 Sn	121.75 锑 6.618 Artim	51 Sb	127.60 命 6.24 Telburi	52 Te	126.904 碘 4.92 Iodine	53 	131.29 伝 5.89 Xenon	54 Xe
132.905 55 铯 Cs	137.32 钡 3.78	7 56 Ba	138.900 領	57 La	178.49 给 13.1	72 Hf	180.94 但 16.6	₀ 73 T a	183.85 钨 19.3	74 W	186.20 徐 21.0	75 Re	190.2 俄 22.59	76 Os	192.22 铱 22.42	77 Ir	195.08 铂 21.4	78 Pt	196.961 金	79 Au	200.59 汞 13.546	80 Hg	204.383 铊 11.85	81 TI	207.2 铅 11.34	82 Pb	208.98 42 9.781	83 Bi	(208.98 年 ト 9.4	,84 Po	(209.99) 砹	85 At	(222.02) 氡 9.91	86 Rn
(223.02) 87 纺 Fr	(226.03 信 5.0 Radius	, 88 Ra	(227.03	, 89 Ac	(261.) '	104 Rf m	(262.)	105 Db	(263.) Seabor	106 Sg	(262.) Bohri	107 Bh	(265.) Hassi	108 Hs	(266.)	109 Mt	(281.)	110 Ds m	(281.)	111 Rg m	(285.)	112 Cn miciu	(286.) Ununt	113 Uut	(289.) Ununo	114 Juq m	(289.) U	115 Jup m	(293.) Ununi	116 Juh m	(294.) Unnilse	117 Jus m	(294.) Ununo	118 Juo m
r rancoim	radium	n.	Actin	<u></u>	140.11: 铈	58 Ce	140.90 镨	₀ 59 Pr	144.24 钕	60 Nd	(144.9) 钜	1) 61 Pm	150.36 任	62 Sm	151.96 铕	₅ 63 Eu	157.25 钆	64 Gd	158.92: 试	5 65 Tb	162.50 镝	66 Dy	164.93 钬	67 Ho	167.26 铒	68 Er	168.93 任	₄ 69 Tm	173.04 镜	70 Yb	174.967 镥	71 Lu	<u>onaio</u>	Jua
雕成道				1	Ceriun 232.03(社 11.7 Thoriu	1 90 Th m	Prasec (231.04 (231.04 (231.04 (231.04 (231.04)	n odymiu 91 Pa tnium	19:07 Urani	s) 92 U	0.475 Prome (237.0) 镎 20.4 Neptu	ethium 5) 93 Np nium	(244.0) (244.0	ium 5) 94 Pu iium	5.20 Europi (243.00 销 13.6 Ameri	ium 5) 95 Am icium	Gadol (247.0 (5) 13.511 Curiu	7) 96 7) 96 Cm 1 m	5.27 Terbiu (247.07 倍 Berkel	m 97 Bk	0.34 Dyspx (242.00 (41) Califo	osium 5) 98 Cf mium	Holmi (252.08 Q Finstei		(257.) (257.) (3 Fermit	100 Fm	(258.) (258.) (1) (1) (1) (1) (1) (1) (1) (1) (1) (1	m 101 Md m eleviu	Ytterbi (259.) 锘 Nobeli	102 No	Lutetin (260.) ~ 佬 Lawren	m 103 Lr		

~23 different beam species (~10 new) provided by HIRFL every year

Highlights progress

Nuclear Astrophysics

Studies of key (a,p) reactions in Type I X-ray bursts at RIBLL

CRIB@University of Tokyo

RIBLL1@IMP

Publications 1. J.J. He *et al.*, Eur. Phys. J. A47(2011)67 2. J.J. He *et al.*, Phys. Lett. B725(2013)287 3. J.J. He *et al.*, Phys. Rev. C88(2013)012801R 4. J. Hu *et al.*, Phys. Rev. C90(2014)025803 5. L.Y. Zhang *et al.*, Phys. Rev. C99(2014)015804 6. J.J. He *et al.*, Nucl. Instr. Meth. A680(2012)43 7. S.Z. Chen, Nucl. Instr. Meth. A735(2014)466

RIB physics

RIBLL Collaboration established in 2011, including >16 institutions

-Phys. Rev. Lett 112,162501 (2014) -Phys. Rev. C90, 014606(2014) -Phys. Rev. C87, 024312 (2013) -Phys. Rev. C87, 044613 (2013) -Phys. Lett. B727, 126 (2013) -Phys. Rev. C84, 037603 (2012) -Phys. Rev. C85, 024621 (2012) -Phys. Rev. C81, 054317 (2010) -Phys. Rev. C82, 064316 (2010) -Phys. Rev. C80, 014310 (2009)

Atomic Physics

Two-center interference observed in a collision between H₂⁺ projectile used as a double slit and helium target atoms using kinematically complete technique

IMP and MPIK collaboration

Momentum transfer pattern @ inter-nuclear distances

Dielectronic recombination spectroscopy at cooler storage ring

The resolution of dielectronic recombination spectroscopy is of 100meV. Paved the way to precision spectroscopy at CSR.

Mass Measurements

Nuclear physics road map in China

1986 Beijing Tandem HI-13

1988 Lanzhou cyclotron SSC

2008 Lanzhou storage ring CSR

2025

.....

Beijing ISOL

.....

2015 Beijing rare ion beam BRIF

High Intensity heavy ion Accelerator Facility

HIAF: One of 16 large-scale research facilities proposed in China in order to boost basic science, now under design optimization and technical R&D

- Proposed by IMP in 2009.
- Approved in principle by the central government in the end of the 2012 (700MUS\$).
- Design Report(v1.0) was published in July 2014

Next-generation high intensity facilities are required for advances in nuclear physics and related research fields:

Fascinating and crucial questions

- To explore the limit of nuclear existence
- To study exotic nuclear structure
- Understand the origin of the elements
- To study the properties of High Energy and Density Matter

Perspective-New proposal

HIAF: Multi-purpose facility

with unprecedented parameters

Multi-purpose facility

with unprecedented parameters

Unprecedented beam Intensity(Comparison with HIRFL):

- Primary beam intensity increases by x 1000 x 10000
- secondary beam intensity increases by up to x 10000

Precisely-tailored beams

- beam cooling (Electron, Stochastic, laser; high quality, very small spot)
- Beam compression (Ultra-short bunch length: 50-100ns)
- super long period slow extraction (Super long, high energy, quasi-continuous beam)

Wide beam Energy:

- heavy-ion energy $: \times 10 - \times 15$

Versatile operation modes:

- parallel operation, beam splitting (*increase of target time, high integrated luminosity*)

	Ions	Energy	Intensity
SECR	U ³⁴⁺	14 keV/u	0.05 pmA
iLinac	U ³⁴⁺	25 MeV/u	0.028 pmA
BRing	U ³⁴⁺	0.8 GeV/u	~1.4×10 ¹¹ ppp
	U ³⁴⁺	1.1 GeV/u	~5.0×10 ¹¹ ppp
CRing	U ⁹²⁺	4.1 GeV/u	~2.0×10 ¹¹ ppp

- Kolkata
- Variable Energy Cyclotron Center (VECC)

Main features of ANURIB facility (Green field project costing around 200M US\$)

- 50 MeV, 2 mA electron linac photo-fission driver for production of neutron-rich RIBs
- Proton-rich nuclei will be produced using a 50 MeV proton Cyclotron
- 3. Neutron & Positron Beam Facility
- 4. Both ISOL and Projectile Fragment Separator type facility
- Will accelerate both radioactive and high intensity stable isotope beams
- Fragmentation /fusion of radioactive ion beams to produce near drip-line n-rich /p-rich nuclei.

Pilot for ANURIB

RIBs produced so far

RIB	Prod. route	T1/2	l(pps) @ before RFQ	l(pps) @ after RFQ	Applications							
¹⁴ O	¹⁴ N(p, n)	71 s	5.0 x 10 ³	3.2 x 10 ³	super-allowed beta decay, test of standard model; break-out reaction from hot CNO cycle to rp-process							
⁴² K	⁴⁰ Ar(α,pn)	12.36 hr	2.7 x 10 ³	-	bio-medical tracer							
⁴³ K	⁴⁰ Ar(α,p)	22.3 hr	1.2 x 10 ³	-	bio-medical tracer							
⁴¹ Ar	Ar ⁴⁰ Ar(α,2pn) 109 min 1.3 x 10 ³				tracer used in engineering ; wear studies							
¹¹¹ In	^{nat} Ag(α,xn)	2.8 days	1.6 x 10 ³	-	Perturbed angular correlation spectroscopy, medical radio-tracer							
^{10³}	1.46 MeV ⁴⁰ K			21 MoV 140	Optimized parameter value							
10 ²	(baçkground)		2		beam ¹⁴ O ²⁺							
101 Bridge	What have a short the same	ha	k		ECR ext. vol. 12.3 kV							
	n a raa taliwa kanabada	de sala da barantearis		and a line way way and	RFQ power 10 kW cw							
100	Gamma-spe <u>ctru</u>	ım for 14- <u>Oxy</u>	/gen		RFQ vane vol. 27 kV							
1600	1600 1800 2000 2200 2400 2600 2600 RFQ parameters for 14-Oxygen											

Australia

SOLenoid Exotic Rare iSOtOpe separator (SOLEROO Separator)

- ✤ Canberra
- Australian National University (ANU)

SOLEROO separator – <u>sol</u>enoidal <u>exotic</u> <u>rare</u> is<u>otope</u> separator

- ANU 15 MV tandem electrostatic accelerator
- ^{6,7}Li beams 10 to 60 MeV; ⁹Be production target 2.8 mg cm⁻²
- Superconducting solenoid: beam rejection and RIB refocusing
- Tracking detectors: trajectory reconstruction and particle i/d

Another operating mode of SOLITAIRE (gas-filled fus-ev residue spectrometer)

PPAC Tracking detectors: time, 1mm position resolution

PPACs handle rates > 10⁶ /sec Provide tagging of desired RIB

- RIB intensities: ⁶He > 10⁵/sec ⁸Li > 10⁶/sec
- Tracking detectors: Particle i/d: ∆E, ToF (DC or pulsed beam) Reconstruction of trajectories: Focal length ⇒energy resolution < 1 MeV Secondary target interaction position < 2 mm
- Physics: compact DSSD 512 pixel detector array
- First physics experiment April 2015

We can expect a fantastic landscape of RIB facilities in Asian within a decade, hopefully allowing our access to the edge of a large unknown area on the nuclear chart.

Facility itself does not mean the success of science research: User-oriented management and organizations highly required and should be more largely expanded in Asia, starting from Japan to China, Korea, India, Australia ...

Thanks to...

Korea: Yeong-Kwan Kwon (RISP) China: Jiancheng Yang (IMP), Weiping Liu (CIAE) India: Alok Chakrabarti (VECC) Australia: David J. Hinde (ANU)

and others

Facilities under construction at a Glance

• RAON

Facility	Institution (Country)	Driver	Post-acc.	Operation	RI production		
	IBS/RISP	SC-Linac (IF) up to 200AMeV (²³⁸ U)		2021 -			
RAON	(Daejeon, Korea)	Cyclotron (ISOL) proton, 70MeV, 70kW	SC-Linac up to20AMeV, up to 200AMeV	2021~	ISOL+IF		
HIAF	IMP (Huizhou, Guangdong China)	i-Linac up to 25AMeV (²³⁸ U) BRing – CRing up to 4.1AGeV (²³⁸ U)	Synchrotron	2024~ (Phase I)	IF & ECS		
ANURIB	VECC (Kolkata, India)	SC electron Linac Electron, 50MeV, 100kW	Linac booster up to 7AMeV Cyclotron up to 100AMeV	2017~ (Phase I)	ISOL (photo-fission)		
SOLEROO	ANU (Canberra, Australia)	Tandem 10 to 60 MeV (^{6,7} Li)		2015~	IF		

1²

초과학연

Thank you for your attention !

1**\\$**7

Closing by Bird's-eye site view...

RAON Site

Bird's-eye view

초과학연구원

Area (Lot/Bldg): 952,066 m² / 130,257 m²

Jilin

Site of HIAF project-new campus

Huizhou, Guangdong

HIAF project in China

Site of HIAF project-new campus

View of the HIAF campus