Recent Reaction Dynamics Studies with light RIBs at Coulomb Barrier Energies

Marco Mazzocco

Dipartimento di Fisica e Astronomia, Università di Padova and INFN – Sezione di Padova, Padova, Italy

EURORIB'15 – June 7th-12th, Hohenroda, Germany

Outline

I. Introduction **II. Recent Results III. Facility EXOTIC at INFN-LNL IV.Recent Results at EXOTIC** V. Summary

I. Introduction

Light Exotic Nuclei

Many different features contribute to populate of **exotic nuclei** the light portion of the nuclide chart:

- **1. Low Coulomb Barrier** (Z < 6);
- 2. Low Centrifugal Barrier (s, p orbits);
- **3. Weak Binding Energy** (< 1.0 MeV).

Halo Nuclei:

rarified nuclear matter distribution surrounding a mostly inert core.

Neutron Skin Nuclei:

large neutron concentration around the nuclear surface.

Halo and Neutron Skin Nuclei

II. Recent Results

Sub-Barrier Fusion with RIBs

Static (e.g. deformation) and **dynamic (e.g. positive Q_{value} transfer channels)** effects enhance the sub-barrier fusion probability.

Predictions for the fusion cross section in the reaction ¹¹Li + ²⁰⁸Pb. Additional open channels + extended distibution → Enhancement Weak binding energy → Hindrance

L.F. Canto et al, Phys. Rep. 424 (2006) 1 and B.B. Back et al., Rev. Mod. Phys. 86 (2014) 317

⁶He + ²³⁸U at LLN

No enhancement of fusion probability by the neutron halo of ⁶He

R. Raabe^{1,2}, J. L. Sida¹*, J. L. Charvet¹, N. Alamanos¹, C. Angulo³, J. M. Casandjian⁴, S. Courtin⁵, A. Drouart¹, D. J. C. Durand¹, P. Figuera⁶, A. Gillibert¹, S. Heinrich¹, C. Jouanne¹, V. Lapoux¹, A. Lepine-Szily⁷, A. Musumarra⁶, L. Nalpas¹, D. Pierroutsakou⁸, M. Romoli⁸, K. Rusek⁹ & M. Trotta⁸ NATURE | VOL 431 | 14 OCTOBER 2004

Experiment performed at LLN (Belgium) with a ²³⁸U fissile target.

Very high solid angle coverage.

Enhancement of the total reaction cross section at subbarrier energies due to the 2neutron transfer.

⁸He + ¹⁹⁷Au at GANIL

PRL 103, 232701 (2009)

Selected for a Viewpoint in *Physics* PHYSICAL REVIEW LETTERS

week ending 4 DECEMBER 2009

Modern Rutherford Experiment: Tunneling of the Most Neutron-Rich Nucleus

A. Lemasson,¹ A. Shrivastava,^{1,2} A. Navin,^{1,*} M. Rejmund,¹ N. Keeley,³ V. Zelevinsky,⁴ S. Bhattacharyya,⁵
 A. Chatterjee,² G. de France,¹ B. Jacquot,¹ V. Nanal,⁶ R. G. Pillay,⁶ R. Raabe,¹ and C. Schmitt¹

⁸He+¹⁹⁷Au: very moderate (deep) sub-barrier fusion enhancement.

¹¹Be + ⁶⁴Zn at REX-ISOLDE

Factor 2 enhancement for the ¹¹Be total reaction cross section with respect to ¹⁰Be and suppression of the Coulomb nuclear interference peak.

> A. Di Pietro et al., Phys. Rev. Lett. 105 (2010) 022701

The suppression of the so called **"Fresnel" peak** is a clear signature of **Strong Coupling Effects**.

N. Keeley, K.W. Kemper and K. Rusek, Eur. Phys. J. A 50 (2014) 145.

¹¹Li + ²⁰⁸Pb at TRIUMF

PRL 109, 262701 (2012)

PHYSICAL REVIEW LETTERS

week ending 28 DECEMBER 2012

Do Halo Nuclei Follow Rutherford Elastic Scattering at Energies Below the Barrier? The Case of ¹¹Li

M. Cubero,^{1,2} J. P. Fernández-García,^{3,4} M. Rodríguez-Gallardo,³ L. Acosta,⁵ M. Alcorta,¹ M. A. G. Alvarez,^{3,4} M. J. G. Borge,^{6,*} L. Buchmann,⁷ C. A. Diget,⁸ H. Al Falou,⁹ B. R. Fulton,⁸ H. O. U. Fynbo,¹⁰ D. Galaviz,¹¹ J. Gómez-Camacho,^{3,4} R. Kanungo,⁹ J. A. Lay,³ M. Madurga,⁶ I. Martel,⁵ A. M. Moro,³ I. Mukha,⁴ T. Nilsson,¹² A. M. Sánchez-Benítez,⁵ A. Shotter,^{7,13} O. Tengblad,⁶ and P. Walden⁷

Elastic scattering differential cross section very sensisitive to the **strenght** of **E1 transitons** just above the **breakup threshold**.

¹¹Li Breakup: J.P. Fernandez-Garcia et al., Phys. Rev. Lett. 110, 142701 (2013)

¹¹Li + ²⁰⁸Pb: Fusion

Differences between Li isotopes are **geometrical** in origin, except for ¹¹Li

Experimental data **below** most of the **theoretical predictions**.

¹¹Be + ¹⁹⁷Au at TRIUMF

Upcoming Results! V. Pesudo et al., Acta Phys. Pol. 44 (2014) 375

⁸B – Elastic Scattering

⁸B+⁵⁸Ni (Notre Dame, USA)
E.F. Aguilera et al., Phys. Rev. C. 79, 021601

⁸B+²⁰⁸Pb (Lanzhou, China) E = 170.3 MeV, i = 500 pps

Very **small breakup effects** on the elastic scattering at energies well above the Coulomb barrier Y.Y. Yang et al., Phys. Rev. C. 87, 044613 (2013)

⁸B Fusion Controversy

⁸B+⁵⁸Ni: Fusion enhancement above the Coulomb barrier.
E.F. Aguilera et al., PRL 107 (2011) 092701
Fusion estimated from proton evaporation at backward angles.
J. Rangel et al., Eur. Phys. J. A 49 (2013) 57

⁸B+²⁸Si: measured at EXOTIC (Italy) with the active target technique: agreement with systematics (UFF).

A. Pakou et al., Phys. Rev. C 87 (2013) 014619

III. Facility EXOTIC at INFN-LNL

The Project EXOTIC

- Some 10 years ago we laid out a facility at the Laboratori Nazionali di Legnaro (LNL) of the INFN for the in-flight production of light weakly-bound Radioactive Ion Beams.
- The production mechanism employs **inverse kinematics reactions** with heavy projectiles impinging on **gas targets** (**p**,**d**,³**He**).
- The **commissioning** of the facility was performed in 2004. F. Farinon et al., NIM B 266, 4097 (2008)
- An **upgrade process** was subsequently performed in 2012. M. Mazzocco et al., NIM B 317, 223 (2013)

So far we have delivered **5 RIBs**:

- 1. ${}^{17}F(S_p = 600 \text{ keV})$: $p({}^{17}O, {}^{17}F)n$
- 2. ⁸B (S_p = 137.5 keV):
- 3. ⁷Be ($S_{\alpha} = 1.586$ MeV):
- 4. $^{15}O(S_p = 7.297 \text{ MeV})$:
- 5. ⁸Li ($S_n = 2.033$ MeV):

p(¹⁷O,¹⁷F)n ³He(⁶Li,⁸B)n p(⁷Li,⁷Be)n p(¹⁵N,¹⁵O)n d(⁷Li,⁸Li)p
$$\begin{split} Q_{value} &= -3.54 \text{ MeV};\\ Q_{value} &= -1.97 \text{ MeV};\\ Q_{value} &= -1.64 \text{ MeV};\\ Q_{value} &= -3.54 \text{ MeV};\\ Q_{value} &= -0.19 \text{ MeV}. \end{split}$$

Facility EXOTIC at LNL

Light RIBs at EXOTIC

Experiments (2006 - 2012)

¹⁷F + ²⁰⁸Pb [Quasi-Elastic Scattering and Breakup]
 C. Signorini et al., Eur. Phys. J. A 44, 63 (2010)

- ¹⁷F + ⁵⁸Ni [Quasi-Elastic Scattering] M. Mazzocco et al., Phys. Rev. C 82, 054604 (2010)
- ¹⁷**F** + ¹**H** [Elastic Scattering]

N. Patronis et al., Phys. Rev. C 85, 024609 (2012)

⁸**B** + ²⁸**Si** [Fusion]

A. Pakou et al., Phys. Rev. C 87, 014619 (2013)

⁷Be + ⁵⁸Ni [Elastic Scattering, Direct Processes] M. Mazzocco et al., Acta Phys. Pol. B 45, 363 (2014)

Experiments (2013 - 2015)

³²S+ ⁴⁸Ca, ⁶⁴Ni [Recoil Separation (PRISMA)] Spokesperson: G. Montagnoli, A.M. Stefanini, M. Mazzocco

⁷Be + ²⁰⁸Pb [Elastic Scattering, Direct Processes] Spokespersons: M. La Commara, L.Stroe, M. Mazzocco

7Be + ²⁸Si [Breakup Threshold Anomaly] Spokespersons: A. Pakou, D. Pierroutsakou

⁸Li + ⁵⁸Ni [Elastic Scattering]

Spokespersons: D. Torresi, M. Mazzocco

⁸Li + ⁹⁰Zr [Total Reaction Cross Section] A. Pakou at al., Eur. Phys. J. A 51, 55 (2015)

¹⁵O + ⁴He [Resonant Scattering] Spokesperons: D. Torresi, C. Wheldon

IV. Recent Results: EXOTIC

⁷Be + ⁵⁸Ni at 22 MeV (LNL)

7Be RIB:E = 22.0 ± 0.4 MeV
Intensity = 250 kHz
Purity = 99 %

DINEX ARRAY (Huelva, Spain): 4 two-stage ΔE (DSSSD 40-42 µm) - E_{res} (DSSSD 1000 µm) telescopes. Solid angle coverage: ~10%.

EACH DSSSD:

Active area: 48.5 x 48.5 mm². Front and back sides

segmented into **16 strips.** A.M. Sanchez-Benitez et al., J. Phys. G 31, S1953 (2005)

(Quasi-) Elastic Scattering

³He and ⁴He Production

⁴He are 4-5 times more abundant than ³He. In case the Breakup Channel ⁷Be → ³He + ⁴He was dominating the reaction dynamics: comparable ³He and ⁴He yields would be expected.

³He Production

⁴He Production

Exclusive Breakup (³He + ⁴He)

COINCIDENCE DETECTION

Exclusive Breakup (³He + ⁴He) 1n-stripping (⁶Be = α + p + p) 1n-pickup (⁸Be = α + α)

⁴He-stripping SINGLE DETECTION ³He-stripping Fusion-Evaporation

^{3,4}He Single Detection

 $Q_{value} = E_{He} + E_{recoil} - E_{beam}$ ³He reconstructed Q_{value}
spectra compatible (within
0.5 MeV) with the Q_{opt} for
the ⁴He-stripping process.
(Q_{opt} ~ -9 MeV)
D.M. Brink, Phys. Lett. B 40, 37 (1972)

³He-stripping and Fusion-Evaporation foresee very similar ⁴He energy distributions.
At backward angles we have an excellent agreement with the predictions of PACE2

A. Gavron, Phys. Rev. C 21, 230 (1980)

^{3,4}He Angular Distributions

The compound nucleus contribution (161.5 ± 11.5 mb) was normalized to the data collecated at backward angles and subtracted to evaluate the contribution provided from direct processes.
 Exp. α-multiplicity (0.41 ± 0.12) in agreement with PACE2 (0.43) E. Martinez-Quiroz et al., Phys. Rev. C. 90, 014616 (2014)

^{3,4}He (No) Coincidence Detection

The exclusive breakup cross cross section was estimated within the Continuum Discretized Coupled Channels (CDCC) formalism. $\sigma_{breakup} \sim 10.8 \text{ mb}$

The **1n-pickup** and the **1nstripping** cross sections were computed with the Distorted Wave Born Approximation (DWBA). $\sigma_{1n-pickup} \sim 6.0 \text{ mb}$ $\sigma_{1n-stripping} \sim 9.8 \text{ mb}$

⁷Be + ⁵⁸Ni: Summary

ELASTIC SCATTERING

Remarkable agreement with an earlier measurement and with DWBA calculations without free parameters.

FUSION

 α -multiplicity in agreement with PACE2 predictions.

DIRECT PROCESSES ³He (34.4 \pm 6.3 mb)
⁴He (44.1 \pm 9.9 mb) Evolutive Breakup (10, 8 mb)

Exclusive Breakup (10. 8 mb)

⁴He-stripping (23.6 mb)

Exclusive Breakup (10. 8 mb) 1n-stripping (9.8 mb) 1n-pickup (12.1 mb) ³He-stripping (11.4 mb)

Remark: Higher statistical accuracy and **larger geometrical efficiency** for the detection of coincidences would be highly desirable.

⁷Be + ²⁰⁸Pb (LNL, Nov 2013)

ΔE-E_{res} **Plots**

Elastic Scattering

Reaction Cross Section (preliminary)

A preliminary **optical model best-fit analysis** of the quasi-elastic scattering angular distributions suggests for **⁷Be** a **behaviour** more similar to ^{**⁷Li**} than to ^{**⁶Li**}.

⁷Be + ²⁰⁸Pb: Prel. Summary

QUASI-ELASTIC SCATTERING

Behaviour more similar to ⁷Li than to ⁶Li (quite surprising, if confirmed)

FUSION

No measurement.

Some information might be extracted from the ⁴He production, however such a heavy compound system more likely evaporates neutrons rather than charged particles.

DIRECT PROCESSES: ⁴He/³He ratio

 4.75 ± 0.60 (Tel. A-D, forward angles) 6.80 ± 0.53 (Tel. B-E, backward angles) 10.51 ± 1.05 (Tel. F, very backward angles)

⁸B + ²⁰⁸Pb (CRIB, 2014)

⁸B + ²⁰⁸Pb Elastic Scattering

Telescope	<0 _{cm} >	Exp.	Sim.	$d\theta/d\theta_R$	Stat. Err.
Α	28°	71143	71131	1.00	0.01
B-C	70°	645	1121	0.58	0.03
D-E	114°	85	228	0.37	0.05
F	154°	15	95	0.16	0.04

70% of the collected statistics

Reaction Cross Section

An **extremely preliminary** optical-model best-fit analysis of the ***B**+^{20*}**Pb** elastic scattering angular distribution would suggest an **extraordinary large reaction cross section**.

V. Summary

The study of the **reaction dynamics** induced by light weaklybound Radioactive Ion Beams (**RIBs**) at near-barrier energies is currently an **active research field** in Nuclear Physics.

- The exotic features of many light RIBs **enhance** the **reaction probability** at sub-barrier energies rather than the **fusion**.
- This **enhancement** is mainly due to **transfer processes** (especially the 2n-stripping) for **Helium** isotopes (⁶He and ⁸He) and to the **breakup** process for ¹¹Li. Very soon, high quality data for ¹¹Be will help complementing the established systematics.

The situation is still a bit **controversial** for ⁸**B**.

- Our facility **EXOTIC** is **fully operational** at **INFN-LNL** and 5 RIBs for reaction dynamics studies have been delivered.
- **Very promising results** have been already obtained for ⁷Be and, hopefully, the additional measurement performed at CRIB will help solving the ⁸B controversy.

EXOTIC Collaboration

Napoli: A. Boiano, M. La Commara, G. La Rana, D. Pierroutsakou, C. Parascandolo **Padova**: C. Signorini, F. Soramel, E. Strano, C. Stefanini, D. Torresi Milano: C. Boiano, A. Guglielmetti CIAE (China): H.Q.Zhang, C.J.Lin, H.Jia, Y.Yang, L.Yang CRIB/RIKEN (Japan): H.Yamaguchi, D.Kahl, Y.Sakaguchi, N.Iwasa, T.Teranishi, S.Kubono, Y.Wakabayashi HIL (Poland): N.Keeley, C.Mazzocchi, K.Rusek, I.Strojek, A.Trzcinska Huelva (Spain): I.Martel, L.Acosta, G.Marquinez-Duran, A.M.Sanchez-Benitez Ioannina (Greece): A.Pakou, O.Sgouros, V.Soukeras, E.Stiliaris, X.Aslanouglou KEK (Japan): H.Miyatake, S.Jeong, Y.Watanabe, H.Ishiyama, N.Imai, Y.Hirayama, Y.H.Kim, S.Kimura, I.Mukai, I.Sugai LNS (Italy): M.Cavallaro, D.Carbone, A.Di Pietro, P.Figuera, M.Fisichella, J.P.Fernandez-Garcia, M.Lattuada, C.Spitaleri, R.G.Pizzone, M.La Cognata NIPNE (Romania): D.Filipescu, T.Glodariu, A.I.Gheorghe, T.Sava, L.Stroe **Birmingham** (UK): T.Kokalova, C.Wheldon

