Active targets for research on exotic nuclei

Riccardo Raabe

KU Leuven, Instituut voor Kern- en Stralingsfysica

Riccardo Raabe (KU Leuven)

J.S. Thomas et al., PRC 76 (2007) 044302

Riccardo Raabe (KU Leuven)

Why active targets

- Increase luminosity without compromising resolution
- Light ion probes in inverse kinematics
 → gaseous targets
- Reactions with low momentum transfer
 → low thresholds

Riccardo Raabe (KU Leuven)

EURORIB '15, 07-12/06/2015

Concept

Time-Projection Chamber (TPC) + gas is the target

- Electrons produced by ionization drift to an amplification zone
- Signals collected on a segmented
 "pad" plane ⇒ 2d-image of the track
- 3rd dimension from the drift time of the electrons
- Information:
 - angles
 - energy (from range or charge)
 - particle identification

Comparison with high-energy devices

High-energy physics	Nuclear structure
Minimum ionising particles	Very high dynamic range
Trigger from ancillary detectors	Internal trigger
Complex reaction High occupancy Through-tracks	Low occupancy Stopped tracks
Resolution ≈50 µm	Resolution ≈1 mm

Riccardo Raabe (KU Leuven)

EURORIB '15, 07-12/06/2015

Amplification technology

From wires...

- Broad signals (induction)
- Mechanically complex, fragile

...to Micro-Pattern Gas Detectors

- Robust
- Reduced ion feedback

Intro Technology O List O Trackers OOOO 3D Cameras OOOO ACTAR TPC OOOOO SummaryO

Amplification technology

From wires...

- Broad signals (induction)
- Mechanically complex, fragile

...to Micro-Pattern Gas Detectors

- Robust
- Reduced ion feedback

Riccardo Raabe (KU Leuven)

Intro Technology O List O Trackers OOOO 3D Cameras OOOO ACTAR TPC OOOOO SummaryO

Amplification technology

From wires...

- Broad signals (induction)
- Mechanically complex, fragile

...to Micro-Pattern Gas Detectors

- Robust
- Reduced ion feedback

Car.

Electronics

GET – General Electronics for TPCs

CEA-Saclay, CENBG- Bordeaux, GANIL-Caen, NSCL

- High front-end density (up to 30 000 channels)
- High-rate throughput (selective readout, zero suppression)
- High dynamic range
- Versatile (amp factor, sampling)
- Intelligent trigger
 - L0 external
 - L1 multiplicity
 - L2 topology

EURORIB '15, 07-12/06/2015

Present active targets

Detector	Home	Technology	Vertex	Physics
IKAR	GSI		No	Elastic (p)
Maya	GANIL	Wires	Yes/No	Various
ACTAR TPC	Various (EU)	Micromegas	Yes/No	Various
MSTPC	Various (Jap)	Wires/GEM	Yes	Resonant (AP)
CAT	CNS	GEM	Yes	Inelastic (GR)
MAIKo	RNCP	MicroPIXEL	Yes	Inelastic (CLU)
pAT-TPC	MSU	Micromegas	Yes	Resonant (CLU)
AT-TPC	MSU-FRIB	Micromegas	Yes	Various
TACTIC	TRIUMF	GEM	No	⁸ Li(α,n) ¹¹ Be
ANASEN	FSU/LSU	Wires	Yes	Res, elastic
MINOS	IRFU	Micromegas	No	Direct (p,xp)
O-TPC	TUNL	Grid	Yes	γ -dissociation
				KU LEUVEN

Vertex trackers

- Hunting rare events
- Intense beams masked or outside
- IKAR, TACTIC, CAT, Maya (masked), MINOS

Riccardo Raabe (KU Leuven)

IKAR

- 10 bar H₂
- 6 chamber elements
- Information: vertex, energy, angle
- Elastic scattering

 → matter distribution
 ^{4,6,8}He, ^{12,14}Be

S. R. Neumaier et al., NPA 712, 247 (2002)

KU LEUVEN

grid

Be-

window

IKAR

- 10 bar H₂
- 6 chamber elements
- Information: vertex, energy, angle
- Elastic scattering

 → matter distribution
 ^{4,6,8}He, ^{12,14}Be

KU LEUVEN

Riccardo Raabe (KU Leuven)

EURORIB '15, 07-12/06/2015

 $^{^{241}}\!Am\ \alpha\text{-sources}$

anodes

cathodes

Investigations of collective modes: isoscalar resonances

- ⁵⁶Ni(d,d') GMR and GQR
 C. Monrozeau et al., PRL 100 (2008) 042501
- ⁶⁸Ni(d,d') and (α,α')
 GMR, GQR and soft monopole
 M. Vandebrouck, PRL 113 (2014) 032504
 M. Vandebrouck, submitted to PRC
- ⁵⁶Ni(α,α') GMR and GDR
 S. Bagchi, submitted to PLB

Investigations of collective modes: isoscalar resonances

- ⁵⁶Ni(d,d') GMR and GQR
 C. Monrozeau et al., PRL 100 (2008) 042501
- ⁶⁸Ni(d,d') and (α,α')
 GMR, GQR and soft monopole
 M. Vandebrouck, PRL 113 (2014) 032504
 M. Vandebrouck, submitted to PRC
- ⁵⁶Ni(α,α') GMR and GDR
 S. Bagchi, submitted to PLB

SummaryO

Riccardo Raabe (KU Leuven)

Riccardo Raabe (KU Leuven)

EURORIB '15, 07-12/06/2015

ACTAR TPC for Giant Resonances

ACTAR TPC

GANIL, CEA Saclay, CENBG, IPNO, KU Leuven, Santiago de Compostela

- Basic configuration: cubic, ≈16000 channels Amplification with micromegas
- Auxiliary charged-particle detectors
- Configuration for inelastic scattering: low pressure, long chamber, Si detectors on the sides

3D cameras

- Exploit the weakest beams ("normal" cross sections)
- All incoming particles generate a signal
 → selective trigger is essential
- MAIKo, MSTPC, OTPCs, ANASEN, (p-)AT-TPC, ACTAR TPC...

- Cluster states in ¹²C
 via ¹²C(α,α')¹²C*
- 14x14x14 cm³
- He+CO₂ 430 mbar
- GEM+µPIXEL
 256+256 channels

KU LEUVEN

Riccardo Raabe (KU Leuven)

Technology **List Trackers Trackers Trackers Trackers Trackers**

ACTAR TPC OOOOO SummaryO

AT-TPC at NSCL (FRIB)

Intro

- Placed inside 2 Tesla solenoid (increase range and measure Bp)
- 250 liters (1 m by 55 cm) active volume
- Physics cases: resonant reactions, transfer reactions, inelastic to GRs, heavy ion reaction to EoS

D. Bazin, W. Mittig, S. Beceiro Novo

KU LEUVEN

D. Suzuki et al., PRC 87 (2013) 54301

Prototype AT-TPC

- Half size of AT-TPC (linear) 253 pads
- ⁶He+⁴He

Intro

Resonance at 9.98 MeV (4⁺) (10.15 MeV previously observed)

KU LEUVEN

Intro Technology I List Trackers I Comeras I Cameras I Comeras I C

AT-TPC at NSCL (FRIB)

D. Bazin, W. Mittig, S. Beceiro Novo

 10 240 pads, 55 cm diameter small triangles 4.7 mm side

Riccardo Raabe (KU Leuven)

Intro Technology List Trackers SOME 3D Cameras ACTAR TPC OOOOO SummaryO

AT-TPC at NSCL (FRIB)

D. Bazin, W. Mittig, S. Beceiro Novo

 10 240 pads, 55 cm diameter small triangles 4.7 mm side

KU LEUVEN

Riccardo Raabe (KU Leuven)

Resonant elastic with Maya

- Thick target method
- Measure: interaction point identification recoil
 E, angle recoil particle
- Redundant information:
 - separation elastic
 from other channels
 - detection in a large solid angle without loss in resolution

KU LEUVEN

Riccardo Raabe (KU Leuven)

Resonant elastic with Maya

S. Sambi et al., EPJA 51 (2015) 25

Riccardo Raabe (KU Leuven)

3D Cameras

Source: ACTARSim Report,

D. Perez-Loureiro & G. Grinyer

ACTAR TPC: transfer reactions

Characteristics of transfer reactions

- 1 mm vertex resolution
 → equivalent to 15 µg/cm² CD₂
- Total thickness ≈25 times larger
- Particles are stopped in gas or escape laterally
- Resolution ≈110 keV for particles stopped in gas

Riccardo Raabe (KU Leuven)

ACTAR TPC

Si Detectors: modular design

- Mother boards with connectors and signal routing
- Detectors on daughter boards (frames) plug onto mother board
- Mother board mechanically fixed on flanges
- 100 x 100 x 1 mm³
 32 + 32 strips

DETECTOR VOID

TTT design Micron Semiconductors

KU LEUVEN

Is particle detection sufficient?

- Main uncertainties:
 - vertex position for small-angle tracks
 - straggling (3%-4%)
 - \rightarrow total resolution \approx 10% (compare simulations)
- γ-ray detection interesting
 if sufficient efficiency
 (≈10% or better)
 - if better resolution

K.L. Jones et al., Nature 465 (2010) 454

Is particle detection sufficient?

- Main uncertainties:
 - vertex position for small-angle tracks
 - straggling (3%-4%)
 - \rightarrow total resolution \approx 10% (compare simulations)
- γ-ray detection interesting
 if sufficient efficiency
 (≈10% or better)
 - if better resolution

K.L. Jones et al., Nature 465 (2010) 454

Is particle detection sufficient?

- Main uncertainties:
 - vertex position for small-angle tracks
 - straggling (3%-4%)
 - \rightarrow total resolution \approx 10% (compare simulations)
- γ-ray detection interesting
 if sufficient efficiency
 (≈10% or better)
 - if better resolution

K.L. Jones et al., Nature 465 (2010) 454

Is particle detection sufficient?

- Main uncertainties:
 - vertex position for small-angle tracks
 - straggling (3%-4%)
 - \rightarrow total resolution \approx 10% (compare simulations)
- γ-ray detection interesting
 if sufficient efficiency
 (≈10% or better)
 - if better resolution

K.L. Jones et al., Nature 465 (2010) 454

γ -ray detection

Issues

- Efficiency
 - (new) scintillators preferred over Ge
 - good angular coverage
 - interested in low energy (up to ≈2 MeV)
 - \rightarrow little material

between source and detectors

- Resolution
 - Intrinsic resolution
 - Doppler broadening
 - ightarrow good position resolution
 - Compare Miniball:
 - ≈30 mm diameter elements
 - at ≈120 mm

N. Warr et al., EPJA 49 (2013) 40

KU LEUVEN

SpecMAT configuration

- With solenoid: cylindrical configuration SiPM for amplification
- Tests with prototypes are in progress

Summary

Active target detectors provide unique opportunities in low-energy Nuclear Physics

- Radioactive beams:
 low intensity and inverse kinematics
 → Active target detectors:
 high luminosity and high resolution
- Versatile: use of different reaction tools for low-energy nuclear physics
- New instruments:
 - higher counting rates
 - higher dynamic range
 - higher resolution
 - combine with various auxiliary detectors

European Research Council Established by the European Commission

