

Study of n-p pairing in N=Z nuclei through n-p pair transfer reactions

LE CROM Benjamin

Supervisors: Marlène Assié and Yorick Blumenfeld Institut de Physique Nucléaire d'Orsay

EURORIB 2015

Overview

I. Physics motivations

- a) Introduction
- b) Study of N-P pairing through transfer reactions

II. Experiment at GANIL in April 2014

- a) Beam production at GANIL for the experiment
- b) Experimental set-up
- c) Reaction identification using MUST2

III. Preliminary analysis of data a) ⁵⁶Ni(p,d)⁵⁵Ni b) ⁵⁶Ni(p,³He)⁵⁴Co / ⁵²Fe(p,³He)⁵⁰Mn

IV. Preliminary results

I. Physics motivations

- a) Introduction
- b) Study of N-P pairing through transfer reactions

Physics motivations

- Pairing between like-particles has been well investigated
- N-P Pairing can be present in both T=1 and T=0 channels
 - → T=1 N-P pairing should be similar to like-particles pairing
 - → T=0 N-P pairing is largely unknown

Nucleon-Nucleon Pairing

Pairing effects should be studied :

By spectroscopy

- → B. Cederwall et al, Nature 469 (2011) 469
- T=0 pairing is important when spins are aligned

By two-nucleon transfer reactions

- Two-nucleon transfer reaction cross-section should be enhanced in presence of strong pairing.
- (p,³He) would be affected by T=0 and T=1 pairing whereas only T=0 pairing would affect (d,α).

- N-P Pairing should be strong in N=Z nuclei with high J orbitals →P. Van Isacker PRL 94,162502 (2005)
- Study of N-P pairing on nuclei from sd shell has already been performed with different experiments (*inconsistency of data*)
 → (p,³He) and (³He,p) reactions measured in inverse kinematics for ²⁴Mg, ²⁸Si, ³²S and ⁴⁰Ca at RCNP Osaka to have consistant data.
- Studying N-P pairing on fp shell nuclei needs to use radioactive beam :
 - → Only one reaction with a nucleus from fp shell : ⁴⁴Ti(³He,p)⁴⁶V in inverse kinematics by A. Macchiavelli

II. Experiment at GANIL in April 2014

- a) Beam production at GANIL for the experiment
- b) Experimental set-up
- c) Reaction identification using MUST2

Beam production at GANIL for the experiment

Primary beam : ⁵⁸Ni (75.A MeV) 2,3µAe

Rotating target : ¹²C (1 mm)

Grand Accélérateur National d'Ions Lourds

LISE spectrometer

E644 experiment performed at GANIL in April-May 2014

Reaction identification using MUST2

III. Preliminary analysis of data

a) ⁵⁶Ni(p,d)⁵⁵Ni

b) ⁵⁶Ni(p,³He)⁵⁴Co / ⁵²Fe(p,³He)⁵⁰Mn

Reaction ⁵⁶Ni(p,d)

- \rightarrow Reaction calibration
- \rightarrow Check angle reconstruction using CATS
- \rightarrow Check energy reconstruction using DSSD and CsI from MUST2
- \rightarrow ⁵⁶Ni(p,d) already studied at MSU

⁵⁶Ni (p,³He) ⁵⁴Co / ⁵²Fe (p,³He) ⁵⁰Mn

Doppler corrected γ spectrum with condition on ³He from MUST2 and beam selection

IV. Preliminary results

Study the evolution of $d\sigma(0^{+})/d\sigma(1^{+})$ according to A using (³He,p) reaction

- The e644 experiment using a very complete set-up was well-performed
- Angular and energy reconstruction permits to have good kinematic lines
- We are currently looking states population to have transfer cross-section ratio
- We will do angular distribution of transfer reaction cross-section and compare with theoretical models
- We will analyse data from ⁵⁶Ni(d,α)⁵⁴Co

- Institut de Physique Nucléaire d'Orsay, Université Paris-Sud CNRS/IN2P3, 91406 Orsay, France
 B. Le Crom, M. Assié, Y. Blumenfeld, M-C. Delattre, N. De Séréville, S. Franchoo, J. Guillot, F. Hammache, P. Morfouace, L. Perrot, I. Stefan, D. Suzuki, G. Verde
- Laboratoire de Physique Corpusculaire de Caen, ENSICAEN CNRS/IN2P3, 14050 Caen, France L. Achouri, M. Aouadi, F. Delaunay, Q. Deshayes, J. Gibelin, S. Leblond, M. Marques, N. Orr, X. Pereira
- Grand Accélérateur National d'Ions Lourds, CEA/DSM CNRS/IN2P3, 14076 Caen, France
 B. Bastin, E. Clement, G. Defrance, O. Kamalou, J. Pancin, T. Roger, O. Sorlin, J-C Thomas, M. Vandebrouck
- Centro de Física Nuclear da Universidade de Lisboa, 1649-003 Lisboa, Portugal
 A. Benitez
- Horia Hulubei National Institute of Physics and Nuclear Engineering, Măgurele, Romania
 R. Borcea, F. Rotaru, M. Stanoiu
- Department of Physics, University of Surrey, Guildford GU2 5XH, United Kingdom W. Catford, A. Knapton, A. Matta
- Service de Physique Nucléaire, CEA-Saclay/IRFU, 91191 Gif-sur-Yvette, France A. Corsi, A. Gillibert, V. Lapoux, E. Pollacco, M. Sénoville
- Universidade de Santiago de Compostela, E-15782 Santiago de Compostela, Spain M. Camano, B. Fernandez, X. Pereira, D. Ramos
- Laboratori Nazionali del Sud, Istituto Nazionale di Fisica Nucleare, Catania, Italy M. Fisichella
- Centre de Sciences Nucléaires et Sciences de la Matière, Université Paris-Sud CNRS/IN2P3, 91406 Orsay, France
 J-A. Scarpaci

Thank you for your attention

Beam selection

Contamination

Gamma spectrum without doppler correction

A. Sanetullaev, B.M. Tsang

37 A.MeV, CH₂ 9,6 mg.cm⁻², HIRA, S800 spectrometer

A. Sanetullaev et al., *Neutron spectroscopic factors of 55Ni hole-states from transfer reactions*, Phys. Lett. B, 736 (2014) 137-141