NeuLAND@R³B: Status and Perspectives

- NeuLAND design goals
- status of the NeuLAND project
 - Technical Design Report
 - prototype experiment S406
 - build up of the demonstrator
 - demonstrator in GSI beam times 2014
 - ongoing production
 - NeuLAND excursion to RIKEN
- next steps

NeuLAND: The High Resolution Neutron Time-of-Flight Spectrometer for R³B

NeuLAND detector parameters:

- full active detector using RP/BC408
- face sice 250x250 cm²
- active depth 300 cm
- 3000 scintillator bars
- 6000 PM / readout channels
- 32 tons

NeuLAND design goals:

- >90% efficiency for 0.2-1.0 GeV neutrons
- Multi-hit capability for up to 5 neutrons
- invariant-mass resolution: NeuLAND-target distance 35 m ΔE < 20 keV at 100 keV above the neutron threshold

Performance Examples

high multi-neutron recognition: 600 MeVgenerated %1n2n3n 5n4n222**92** 0 0 1n2n271327 1 detected 3n 6 $\mathbf{55}$ 32 0 9 0 0 1057504n 0 1 $\mathbf{35}$ 1 5n4 0 0 0 0 56n

high efficiency for low neutron energies:

E _n [MeV]	Eff. [%]
50	79
100	94
150	95
200	91

high resolution at the particle threshold:

From Submodules to Complete NeuLAND

face sice 250x250 cm² active depth 300 cm

K. Boretzky for NeuLAND@R3B - NUSTAR Meeting March 2015

**

Important Stages for NeuLAND

NeuLAND design decision

2012

2015

- Technical Design Report handed in in Nov.
 - S406 experiment with Prototype (150 modules)
 - Approval of Technical Design Resport
- April: first double-plane built at GSI
- start of continuous production
- NeuLAND demonstrator successfully tested in GSI beam times
- preseries of final HV distribution arrived
- 4 double-planes installed at RIKEN
- continuation of production

Important Stages for NeuLAND

S406: breakup of deuteron on CH₂ target @200 to 1500 AMeV

K. Boretzky for NeuLAND@R3B - NUSTAR Meeting March 2015

important feedback from data to simulations!

NeuLAND double planes

assembly of double-planes at GSI by collaborative consortium

collaborative consortium:

GSI PMA PNPI Gatchina Univ. Frankfurt Univ. Cologne TU Darmstadt (TU Dresden) (ATOMKI Debrecen)

NeuLAND building blocks: Scintillator Bars

3000 bars needed

270 cm long: 250×5×5 cm³ detector volume + 2×100 cm built in light guide

purchase of bars:

- frame contract: 4 years (2013-2017) at fixed price
 - 1st order: 430 bars (2013)
 - 2nd order: 200 bars (2014)
- second provider:
 - 1st order: 101 bars (2014)
- next steps:
 - in-kind contribution PNPI/Russia (V. Kuznetsov et al.)
 - future orders within frame contract from german funding

SAT Scintillator Bars: combined LED and Cosmic Test

Light-Production Measurement

- detect transversing cosmic rays
- read-out at one or two sides
- check on scintillation quality

Light-Output Measurement

- LED light from one side of bar
- read-out at far side
- check surface quality

NeuLAND building blocks: Photomultiplier

6000 PMTs needed

- state of the art readout: H8619 w. active voltage divider
 - ordered for in total 8 double-planes
 - "plug and play"

frame contract (2013 -2017, fixed price)

- future perspectives I: check PMTs from Russia as costeffective alternative
- future perspectives II: development of larger Si-PMTs ongoing

(HZDR team - D. Bemmerer et al.)

NeuLAND building blocks: High Voltage Distribution System

6000 HV channels needed

- HVDS system from PNPI (L. Uvarov et al.) is based on 2kV primary power supply with controllable dividers
- individual down-regulation of each channel
- form factor fits to NeuLAND double planes

- accepted as in-kind contribution from PNPI
- pre-series (200 channels) delivered in December 2014
- Site Acceptance Test ongoing
- Delivery of full system up to 2017

NeuLAND building blocks: Electronics

transition from LAND-TacQuila readout (ASIC based)

to TAMEX2 (FPGA based) final layout in development by GSI RBEE

NeuLAND for April beam time at GSI

Foto Gaby Otto

NeuLAND June to October 2014 GSI beam times

Three GSI Beam Times

- S438a April'14:
 - 1 double-plane, Tacquila readout
 - neutrons from Coulomb breakup of Ni
- S438b Oct'14:
 - 4 double-planes, Tacquila readout
 - 2 single-planes, TAMEX readout
 - neutrons from nuclear breakup of Ca
- S438c Oct'14:
 - as before but
 - neutrons from fission of ²³⁶U and others

S438a – Coulomb Breakup of 58Ni April 2014

 \rightarrow time resolution σ = 100-150 ps

\rightarrow study of background situation

S438b – Nuclear Breakup of ⁴⁸Ca Oct 2014

Demonstrator 1/6 of final NeuLAND 50 cm depth:

- 4 double-planes, Tacquila readout
- 2 single-planes, TAMEX readout

NeuLAND Event Display Cosmic Event

by courtesy of Kenjiro Miki

NeuLAND Event Display One Neutron Event

by courtesy of Kenjiro Miki

NeuLAND Event Display One Neutron Event

by courtesy of Kenjiro Miki

NeuLAND Event Display Two Neutron Event

by courtesy of Kenjiro Miki

S438c: SOFIA Experiment Fission of ²³⁶U et al. - Oct 2014

transport box 5.75 tons 401 x 344 x 128 cm³

> participation in several experiments during 2015 to 2017.

4 double-planes sent to RIKEN for 2 years

Summary

- NeuLAND demonstrator built and tested
- data collected to work on simulation and analysis code
- production ongoing
- goal: up to 1 double-plane per month
 → complete detector during 2017
- Cave C can host the full-size detector
- goal: commissioning in late 2017 first physics experiment in 2018