

The R³B CALIFA Endcap

Design and expected performance

Outline:

- Introduction
 - R³B, CALIFA
 - (p,2p) scattering as an example

Roman Gernhäuser

- Phoswich detectors
- iPhos technique
- Expected performance

SIS 100/300

S-FRS

FAIR

R³B

Facility for Antiproton and Ion Research in Europe GmbH

CALorimeter for In Flight detection of γ -rays and charged pArticles.

large solid angle maximum efficiency good resolution easy access to target area

Roman Gernhäuser

The Combined Concept

IPHOS Intrinsic Phoswich Detectors

CEPA Califa Endcap Phoswich Array

∆E -> E separate reactions

QFS @ 700AMeV

eff.	Proton range(mm) in CsI(Tl)	\mathbf{E}_p (MeV)	θ (°)
15%	718 645	686 637	7 15
	597	592	10 20
50%	421 264	$\frac{480}{356}$	$\frac{30}{40}$

length limit 22cm:

- geometrical space,
- light collection
- crystal properties
- efficiency and cost

Segmentation and Doppler Broadening

Roman Gernhäuser

CEPA - the Phoswich Part

2 scintillators 1 readout optical comp.

- high rate capability
- best resolution
- high light yield
- depth information
- redundant ΔE for particles

Materials	∆E/E (% at 662 keV)	Light yield (photons/ keV)	Decay time (ns)	$\lambda_{emision}$
LaBr ₃	2.9	63	16	380 nm
LaCl ₃	3.8	49	28	350 nm

Roman Gernhäuser

The CALIFA Endcap – NUSTAR week March 2015 – GSI

8

CEPA4: a bigger phoswich array

Grupo de Física Nuclear Experimental

Roman Gernhäuser

CEPA4 (10cm)

IPHOS - Csl(Tl)

IPHOS	
ntrinsic Phoswich a	array

Inner radius	41 cm
Numb. of crystals	608
Diff. crystal geometries	18
Crystal volume (CsI(Tl))	$\approx 90.020~{\rm cm}^3$
Crystal weight (CsI(Tl))	$\approx 408 \text{ kg}$
${\rm Crystal \ volume \ (LaBr_3/LaCl_3)}$	$\approx 10.700 \text{ cm}^3$
Crystal weight $(LaBr_3/LaCl_3)$	$\approx 47 \text{ kg}$
Full operation system weight	$\approx 1100 \text{ kg}$

Π

W. Skulski, M. Momayezi, NIM A 458, (2001) 759-771

Roman Gernhäuser

p(¹²C,X) p' @ 80 AMeV (LNS, Catania, Italy)

PID with CsI(TI)

Nf / Ns depends on the ionization density?

Roman Gernhäuser

474 MeV Protons @

Reduced RPID

Roman Gernhäuser

GSI FEBEX Readout

FEBEX3B:

- ADC, 16 ch, 14 Bit, 50 MHz
- Lattice ECP3 150 FPGA
- Timestamp synchronization
- Programmable via GOSIP

FAB_ Addon:

- Digital to Analog converter for programmable baseline offset
- 25 MHz Bessel Nyquist filter

Roman Gernhäuser

IMPEDANCE - CONTROLE

2 0004537

Digital Pulse Generator

- 210 MS/s, 14 bit DAC
- 2-pole low-pass filter
- 8 channel analog multiplexer
- CsI(TI) pulse form with adjustable PID
- controlled via USB or GOSIP
- generates DAQ trigger and SC event

SCA Add-On Board

- Switched capacitor array (analog ringbuffer)
- PSI DRS4:

Up to 5 GHz sampling 33 MHz read out rate

ЛШ

Endcap

Califa Barrel + Endcap

Roman Gernhäuser The CAL

β = 0.82, projectile frame
perfect detectors
5% Csl(Tl) resolution
6% Csl(Tl) resolution @ 1MeV

Roman Gernhäuser

One Neutron Knockout from ²³O

1/2+

3/2: 1373.9 3/2: 1373.9 1373.9 12: 1/2: 17N 0 excitation energy ₩ 0 keV 1373.8 keV

1849.6

Roman Gernhäuser

- Very good efficiency up to 15MeV
- 6% resolution above 1MeV
- iPhos method for reconstruction of high energy particles proven
- CEPA Demonstator successfully tested
- TDR for the CALIFA Endcap handed in Nov. 2014
- start construction in 2015
- setup and commissioning 2017
- day-0 experiments in 2018

Thank you very much for your attention

