II. F

Results from the FRS Ion Catcher with projectile and fission fragments

Timo Dickel

GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Germany

Overview

- The FRS Ion Catcher a test facility for the LEB
- Prototype of the Stopping Cell for the Super-FRS at FAIR
- Multiple-Reflection Time-of-Flight Mass Spectrometer
- Measurements at the FRS Ion Catcher in 2014
- Conclusions and Outlook

Low Energy Branch of the Super-FRS at FAIR

LEB of the Super-FRS:

universal and fast production - high selectivity - cooled exotic nuclei

MATS (Precision Measurements of very short-lived nuclei using an Advanced Trapping System for highly charged ions)

LaSpec (Laser Spectroscopy)

Eur. Phys. J. Special Topics 183 (2010) 1

Stopping Cell Principle

Stopping Cell Design

Cryogenic Operation

Operate He-filled stopping cell at cryogenic temperature (~70 K)

- Ultra-pure helium (freezing-out of contaminants)
 - Ideal for ion survival, 2+ charge state possible
 - No formation of molecules/adducts
- Reduced radial ion diffusion
- Reduced requirements for cleanliness \rightarrow easier, more flexible construction

P. Dendooven et al., NIM A 558 (2006) 580

S. Purushothaman et al., NIM B 266 (2008) 4488

High-density Operation

Use RF structure with small spacing to achieve high RF repelling field (PCB-based RF carpet instead of RF funnel)

- High stopping gas densities
- Less complex construction than RF funnels

M. Wada et al., NIM B 204 (2003) 570 M. Ranjan et al., Europhys. Lett. 96 (2011) 52001 Diameter: 250 mm Electrode spacing: 0.25 mm

Prototype of the Stopping Cell for the LEB

Motivation: TOF Mass Spectrometry in Nuclear Physics

Enables high performance

- Fast \rightarrow access to very short-lived ions (T_{1/2} ~ ms)
- Sensitive, broadband, non-scanning \rightarrow efficient, access to rare ions

Conventional TOF-MS achieve medium mass resolving power only \rightarrow Solution to achieve high mass resolving power and accuracy:

Multiple-reflection time-of-flight mass spectrometer (MR-TOF-MS)

Applications in nuclear physics

- Direct mass measurements of exotic nuclei
- High-resolution isobar separator

C. Scheidenberger et al., Hyperfine Interact. 132 (2001) 531

W.R. Plaß et al., NIM B 266 (2008) 4560

• Diagnostics measurements: Monitor production, separation and low-energy beam preparation of exotic nuclei W.R. Plaß et al., Int. J. Mass Spectrom. 394 (2013) 134

Multiple-Reflection Time-of-Flight Mass Spectrometer

MR-TOF-MS: Mass Resolving Power

World-wide unique combination of performance characteristics!

¹³³Cs⁺, Ion kinetic energy 1.3 keV

FRS Ion Catcher a Test Facility for the LEB

Setup at the FRS Ion Catcher at GSI

T. Dickel, Results from the FRS Ion Catcher with projectile and fission fragments, NUSTAR Annual Meeting, Darmstadt/GSI, March 2 – 6, 2015

Systematic Investigations

Extraction time:

- Extraction time independent of areal density
- given by mechanical desgin of stopping cell

Stability of operation:

from production to mass measurement Stable over one week beam time

Improved Total Efficiency

- Carpet with improved electrical desgin:
 - Higher RF-amplitude possible and lower temperatures

Year	Max. RF-amplitude	Temperature of RF coil
2012	80 Vpp	270 °K
2014	140 Vpp	150 °K

- Improved bake-out + New carpet
 - \rightarrow better cleanliness
 - → Higher ion survial and extraction efficiency (eg. ²²³Th)

- Higher differential pumping
 - \rightarrow Higher areal density \rightarrow Higher stopping efficiency

2012: 3.1 mg / cm²

2014: 6.3 mg / cm²

→ Improved total efficiency up to 30% Factor 2 higher than 2012

Mass Measurement: Uranium Projectile Fragments

Measurement and Separation of Isomers

Measurement of isomers

Spatial separation of ground state and isomeric state

- Identification of ²¹¹Po and ^{211m}Po
- Measurement of excitation energy
- Measurement of isomeric ratio

- Separation using the ion gate of the MR-TOF-MS
- Proof-of-principle: production of isomerically clean beams

Mass Measurement: Uranium Fission Fragments

Mass measurement of uranium fission products produced at 1000 MeV/u
MR-TOF-MS will enable efficient search and measurement of new isotopes and isomers

CSC + MR-TOF-MS as Mass Tagger

Conclusions and Outlook

(Prototype)Stopping cell for the Super-FRS and the FRS Ion Catcher

- Cryogenic, high density operation, suitable for exotic nuclei produced at relativistic energies
- Unprecedented efficiencies for relativistic ions Access to short life times (extraction time ~ 25 ms)

High-performance multiple-reflection time-of-flight mass spectrometer

 High-accuracy mass measurements at m/∆m up to ~ 450,000 Harvest of 6 shifts of beam time:

 \geq 8 first direct mass measurements,

e.g. 220 Ra (T_{1/2} = 17.9 ms, 11 ions only)

- Powerful tool for the measurement of isomers: Identification, excitation energies, isomeric ratios
- High-resolution mass separator for isobars and isomers
- Diagnostics tool: identification and quantification

Development of the future stopping cell for the Super-FRS

- Higher areal densities
- Shorter extraction times
- Higher rate capabilities

Acknowledgements

FRS Ion Catcher / S411 Collaboration

F. Amjad², S. Ayet², T. Dickel^{1,2}, P. Dendooven³, M. Diwisch¹,
J. Ebert¹, A. Estrade², F. Farinon², H. Geissel^{1,2}, F. Greiner¹,
E. Haettner¹, F.Heiße², C.Hornung¹, C. Jesch¹, N. Kalantar-Nayestanaki³, R. Knoebel², J. Kurcewicz², J. Lang¹,
W.Lippert¹, I. Miskun², I. Moore⁴, C. Nociforo², A. Pikhtelev⁵,
M. Petrick¹, M. Pfuetzner², W.R. Plaß^{1,2}, S. Pietri², I. Pohjalainen⁴, A. Prochazka², S. Purushothaman²,
M. Ranjan³, M.P. Reiter¹, A.-K. Rink¹, S. Rinta-Antila⁴,
C. Scheidenberger², M. Takechi², Y. Tanaka², H. Weick², J.S. Winfield², X.Xiaodong^{1,2}, M.I. Yavor⁶

¹ II. Physikalisches Institut, Justus-Liebig-Universität Gießen, Gießen, Germany
 ² GSI Helmholtzzentrum für Schwerionenforschung, Darmstadt, Germany
 ³ KVI, University of Groningen, The Netherlands
 ⁴ University of Jyväskylä, Jyväskylä, Finland
 ⁵ Institute for Energy Problems of Chemical Physics, RAS, Chernogolovka, Russia
 ⁶ Institute for Analytical Instrumentation, RAS, St. Petersburg, Russia

