Experimental Studies with Magnetic Devices at RIBF

Tohru Motobayashi RIKEN Nishina Center

- to start with

- with Zero Degree Spectrometer
- with SAMURAI
- with SHARAQ

Inelastic scattering in inverse kinematics

³²Mg

3 magnetic spectrometers at RIBF ~200 MeV/nucleon, heavier nuclei

ZDS (ZeroDegree) 2007-RIKEN (Kubo,)

SAMURAI 2012-Tohoku (Kobayashi), RIKEN, Tokyo Tech

SHARAQ 2009-CNS (Shimoura, Sakai..), RIKEN

RIKEN RIBF (RI* Beam Factory)

* radioactive isotope

3 magnetic spectrometers at RIBF

 ZDS (ZeroDegree) 2007with elements of the BigRIPS designs

 a part of the separator for new-isotope studies decay studies *e.g.* with EURICA
 analyzer (PID) for (two-body) secondary reaction products coupled with DALI2 (γ detector) - Rikkyo-RIKEN MINOS (vertex-sensitive liq. H₂ target) - Saclay

SAMURAI 2012-Tohoku (Kobayashi), RIKEN, Tokyo Tech

SHARAQ 2009-CNS (Shimoura, Sakai..), RIKEN

Mar. 2015

NUSTAR

NUSTAR

Mar. 2015

"doubly magic" ⁴²Si (Z=14, N=28) - confirmation of the low-lying 2⁺ / higher states

Takeuchi et al., PRL 109 (2012) 182501

The state at 2173 (14) keV* could be 4⁺ ← systematics of 2N removal

Evidence for a new nuclear 'magic number' from the

D. Steppenbeck¹, S. Takeuchi², N. Aoi³, P. Doornenbal², M. Matsushita¹, H. Wang², H. Baba², N. Fukuda², S. Go¹, M. Honma⁴, J. Lee², K. Matsui⁵, S. Michimasa¹, T. Motobayashi², D. Nishimura⁶, T. Otsuka^{1,5}, H. Sakurai^{2,5}, Y. Shiga⁷, P.-A. Söderström², T. Sumikama⁸, H. Suzuki², R. Taniuchi⁵, Y. Utsuno⁹, J. J. Valiente-Dobón¹⁰ & K. Yoneda²

N=34 shell gap large in ⁵⁴Ca? \rightarrow Yes 2⁺ at 2043(19) keV 3000 200 AGIC MOMEN $E(2^{+})$ (keV) Counts / 50 ke/ 30 2500 1,184(24) keV 29(6) 2,043(19) 100(13) 1,656(20) keV 43(8) 20 150 Counts / 50 keV N=32 2000 N=34 1500 2500 500 100 Transition energy (keV) 1500 3,699(28) 2.043(19) 50 1000 N=30 ⁵⁴Ca 500 8000 1000 2000 3000 4000 5000

0

18

20

22

24

LETTER

level structure of ⁵⁴Ca

Transition energy (keV)

Nature, 502 (2013) 207

doi:10.1038/nature12522

Ζ

30

26

28

SEASTER* campaign with MINOS (a liq. H₂ target + a TPC) + DALI2 - spectroscopy of (p,2p)[#] residues -

MagIc Numbers Off Stability

http://minos.cea.fr

- Up to 1 g/cm² liquid hydrogen target
 - Position sensitive TPC
 - Driftime \rightarrow Z-beam axis
 - Vertex position reconstruction
 - Achieved $\approx 5 \text{ mm}$ (FWHM)

A. Oberten A. Eur. Phys. J. A 50, 8 (2014). NUSTAR

efficient and useful

Shell Evolution And Search for JSTAR Two-plus energies At RIBF

Doornenbal

SEASTER* campaign with MINOS (a liq. H₂ target + a TPC) + DALI2

- spectroscopy of (p,2p)[#] residues -

Doornenbal

Maximum of Collectivity Beyond N = 40

n-rich Cr and Fe isotopes

⁷³Co rate: 0.49 pps/pnA, expected 0.86 pps/pnA Collaboration with F. Nowacki, IPHC, $fp - fpq_9d_5$ valence space CNSASTARFria (CEA Saclay), C. Louchart (TU Darmstadt) Doornenbal 3 magnetic spectrometers at RIBF

ZDS (ZeroDegree) 2007-RIKEN (Kubo,)

SAMURAI 2012large acceptance for momentum and angle for particle correlation (invariant masss, ...)

SHARAQ 2009-CNS (Shimoura, Sakai..), RIKEN

SAMURAI

<u>Superconducting Analyzer for MUltiparticle from RA</u>dio Isotope Beam with 7Tm of bending power

SAMURAI

unbound states in nuclei at/around the neutron drip line shell structure / deformation / n-halo, skin / ...

decay energy (invariant mass) • for ${}^{27}F+C \rightarrow {}^{26}O \rightarrow {}^{24}O+2n$

decay energy (invariant mass) for ${}^{27}F+C \rightarrow {}^{26}O \rightarrow {}^{24}O+2n$

SAMURAI next: ²⁸O (N=20) \rightarrow ²⁴O+4n ?

NUSTAR

SAMURAI - various applications

ID of the reaction (particle decay) channel in missing mass measurements (by neutron detection) for ¹³²Sn(p,n)¹³²Sn*

SAMURAI - various applications

TPC (Time Projection Chamber) in the SAMURAI magnet for EOS studies

collaboration with MSU, Kyoto U., ..

SAMURAI - various applications

Proton-nucleus invariant mass measurements for processes of astrophysical interest development of a silicon tracker (with electronics)

collaboration with Texas, Bucharest, Debrecen, Seoul..

3 magnetic spectrometers at RIBF

ZDS (ZeroDegree) 2007-RIKEN (Kubo,)

SAMURAI 2012-Tohoku (Kobayashi), RIKEN, Tokyo Tech

SHARAQ 2009high momentum resolution (dispersion matching) for missing mass measurements

Spectroscopy with High-resolution Analyzer of RadioActive Quantum beams

Designed and constructed by CNS, Univ. Tokyo. Beam line by RIKEN.

Q-D-Q-D

recent highlight Search for Tetra-neutron resonance

⁴He(⁸He,⁸Be)4n

Mar. 2015

MS SHARAQ: Experiments

A/O [a.u]

Direct mass measurement of
 neutron-rich Ca isotope at N~34

Michimasa

(p,n) reaction in inverse kinematics: WINDS

3 magnetic spectrometers at RIBF

ZDS (ZeroDegree) 2007evolution of shell closure / collectivity in n-rich nuclei

SAMURAI 2012neutron unbound states various subjects: GT strength, EOS, explosive H burning,...

SHARAQ 2009-4n scattering states, mass, GT resonances