Alpha-decay of superheavy nuclei with odd particle numbers

B.G. Carlsson, D.E. Ward, D. Rudolph and S. Åberg

Division of Mathematical Physics, Department of Physics Lund University, Sweden

NUSTAR Annual Meeting March, 2015 (GSI)

▲ロト ▲圖ト ▲ヨト ▲ヨト ヨー のへで

Outline

Goals

Nuclear structure model

Decay description

Results for even nuclei

Results for odd nuclei

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

Nuclear chart

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶

$\alpha\text{-decay}$

- Important decay mode for heavy nuclei.
- Decay to excited states useful for spectroscopy, X-ray fingerprinting.
- First observation of excited states in the decay chain of Z=115.[1]

[1] D. Rudolph, PRL 111, 112502 (2013)

・ロト ・ 四ト ・ モト ・ モト

3

From the theoretical side we would like to:

- Predict α-decay lifetimes
- Calculate chance of α -decay to different excited states

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Nuclear structure model II

We assume the effective \tilde{H} can be approximated as

 $\tilde{H}\simeq\hat{T}+\hat{V}\left[
ho
ight]$

ション ふゆ く 山 マ チャット しょうくしゃ

where $\hat{V}[\rho]$ is the effective interaction EDF approach, so average correlations and three-body parts are mimicked by density-dependence

2 methods:

- 1. Try to derive it from bare interactions [1]
- 2. Fit to experimental data (rms=0.58 MeV) [2]

J.W. Negele and D. Vautherin, PRC 5, 1472 (1972)
 S. Goriely, N. Chamel, and J. M. Pearson, Phys. Rev. C 82, 035804, (2010)

Nuclear structure model III

The effective interaction is taken as the Skyrme functional:

$$\hat{V}^{ph}[\rho] = \frac{t_3}{6} (1 + x_3 P^{\sigma}) \rho(\vec{r})^{\alpha} + t_0 (1 + x_0 P^{\sigma}) + \frac{t_1}{2} (1 + x_0 P^{\sigma}) (\hat{k}'^2 + \hat{k}^2) + t_2 (1 + x_0 P^{\sigma}) \hat{k}' \cdot \hat{k} + iw_0 (\vec{\sigma}_1 + \vec{\sigma}_2) \cdot \hat{k}' \times \vec{k} + \hat{v}_{coul} \hat{V}^{pp}[\rho] = v_q \left(1 - \beta \frac{\rho(\vec{r})}{\rho_0}\right)$$

<□▶ <□▶ < □▶ < □▶ < □▶ < □ > ○ < ○

Nuclear structure model IV

HFB+LN. Mean-field + pairing correlations

 $\alpha\text{-decay},$ theoretical description I

Calculation procedure:

- Solve HFB+LN => get mother nucleus $|\Phi^{(M)}\rangle$
- ► Solve HFB+LN => get daughter nucleus $|\Phi^{(D)}\rangle$
- α-particle:

$$\Phi_{00}^{(\alpha)} = \left(\frac{4}{b_{\alpha}^{3}\sqrt{\pi}}\right)^{3/2} e^{-\frac{r_{\pi}^{2}+r_{\nu}^{2}+r_{\alpha}^{2}}{2b_{\alpha}^{2}}} [\chi_{\frac{1}{2}}(s_{1}),\chi_{\frac{1}{2}}(s_{2})]_{00}[\chi_{\frac{1}{2}}(s_{3}),\chi_{\frac{1}{2}}(s_{4})]_{00}$$

◆□▶ ◆□▶ ★□▶ ★□▶ □ のQ@

 $\alpha\text{-decay,}$ theoretical description II

 Find the relative wavefunction of the α-particle

$$g_L(r) = \langle \Phi^{(D)} \Phi^{(lpha)}; \ r | \Phi^{(M)}
angle$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?

$\alpha\text{-decay},$ theoretical description III

- $\Phi^{(M)}$ assumed to be a decaying Gamow state
- The formation amplitude:

 $g_L(r)$

is matched to the analytical solution of an outgoing Coulomb wave function:

 $O_L(Q_\alpha; r).$

• Matched at the touching radius: $r_c = 1.2 \left[(A - 4)^{1/3} + 4^{1/3} \right]$ fm.

・ロト ・聞ト ・ヨト ・ヨト

э

lpha-decay, theoretical description IV

Enclosing the nucleus with a sphere and calculating the flow of α particles through the surface one finds the lifetime.

- Lifetime: $T = \frac{\hbar \ln 2}{\Gamma}$
- Decay width:

$$\Gamma(\mathbf{r}_{c}) = \hbar \sqrt{\frac{2Q_{\alpha}}{\mu}} \left| \frac{\mathbf{r}_{g_{0}}(\mathbf{r}_{c})}{O_{0}(Q_{\alpha};\mathbf{r}_{c})} \right|^{2} = 2\gamma_{0}^{2}(\mathbf{r}_{c}) P_{0}(Q_{\alpha},\mathbf{r}_{c})$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

- Penetrability: $P_0(Q_\alpha, r_c)$ (depends on Q_α)
- Reduced decay width: $\gamma_0^2(r_c)$

 $\alpha\text{-decay},$ theoretical description V

For electromagnetic transitions

$$T(E2) = 1.223 \cdot 10^9 E_{\gamma}^5 \cdot B(E2)$$

reduced transition probabilities B(E2) tell us about nuclear deformations

• Reduced decay widths γ_0^2 tells us about α -particle correlations

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ つ へ ()

α -decay, theoretical description VI

New things in the current approach:

- Self-consistent Skyrme-HFB wave functions.
- Large basis ensures convergence
- Test different pairing functionals

sofar:

- Even-even spherical α-emitters [1]
- New results for α -emitters with odd particle numbers [2]

D.E. Ward, B.G. Carlsson, S. Åberg PRC 88, 064316 (2013)
 D.E. Ward, B.G. Carlsson, S. Åberg, to be published

First results

even-even nuclei

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶ 臣 - のへで

α decay of even nuclei - decay rate Compare with all available data for even spherical nuclei

- Skyrme force SLy4.
- α-clustering underestimated with HFB+LN.
- Relative values are well described.
- Scale formation amplitude with single constant C. Mean Γ_{th}/Γ_{exp} = 1.

・ロト ・聞ト ・ヨト ・ヨト

α decay of even nuclei - effect of structure Remove Q_{α} dependence \rightarrow Reduced widths

- Scaling leads to better results than empirical formulas
- From approximate formulas we expect [1]:

$$\gamma^2 \sim (\Delta_\pi \Delta_
u)^2$$

[1] J.K. Poggenburg, H.J. Mang, J.O. Rasmussen, Phys. Rev. 181, 1697 (1969)

▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ _ 圖 _ ����

First results

odd nuclei

- ◆ □ ▶ → 個 ▶ → 注 ▶ → 注 → のへぐ

Odd nuclei, competing decay channels

- Odd nucleon remains in same orbital Favored
- Odd nucleon changes orbital Unfavored/Hindered

• Spin flip,
$$j_i = l_i \pm \frac{1}{2}$$
 to $j_f = l_f \mp \frac{1}{2}$.

- Changes parity.
- ► Rule-of-thumb estimates, Fav ~3, Change Parity ~100, Spin Flip ~1000 slower decay rate than even-even.[2]

[2] G.T. Seaborg, W.D. Loveland, *The Elements Beyond Uranium*, Wiley-Interscience (1990)

Odd nuclei

Formation amplitude, Favored and Hindered components

Mother and Daughter states,

$$\begin{split} |M; k_i \rangle &= \beta_{k_i}^{\dagger} | M_{ee} \rangle, \\ |D; k_f \rangle &= \beta_{k_f}^{\dagger} | D_{ee} \rangle. \end{split}$$

• Formation amplitude, partial wave L_{α} ,

$$g_{L_{\alpha}}(r) = \delta_{I_{M},I_{D}} \delta_{L_{\alpha},0} F_{k_{f},k_{i}}^{\pi} g_{0}^{ee}(r) - \frac{1}{2} \left(1 + (-1)^{I_{M}+I_{D}-L_{\alpha}} \right) g_{L_{\alpha}}^{H}(r)$$

- *F*-part odd particle acts as spectator. Factor $F_{k_{\ell},k_{l}}^{\pi} \approx 1$.
- *H*-part orbitals k_i , k_f involved in formation of α particle.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ● ● ●

Odd nuclei: reduced widths

Same scaling factor C from the fit to even-even.

		Favored	Spin Flip	Parity Change	
Mean hindrance:	Exp	2.6	163	462	
	Th	1.7	625	335	
					- ¥)

Scaling with pairing

Approximate formulas BCS case, c.f.[4],

Favored Reduced width scales with both pairing gaps,

$$\gamma^2 \sim (\Delta_\pi \Delta_
u)^2.$$

Hindered Scales with occupation of odd particle and even pairing gap,

$$\gamma^2 \sim (U^D_{k_i} V^M_{k_f} \Delta_{\nu})^2 / (2j_M + 1).$$

・ロト ・ 日 ・ エ ヨ ・ ト ・ 日 ・ うらつ

In addition non-trivial dependence on the involved orbitals

[4] J.K. Poggenburg, H.J. Mang, J.O. Rasmussen, Phys. Rev. 181, 1697 (1969)

Results for the Po chain

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Results for the Superheavy region

Odd neutron numbers

Results for the Superheavy region Odd proton numbers

Summary

- Practical approach with one free parameter fitted to even-even nuclei describes decay widths of both even and odd nuclei.
- > Provides predictions for α -gamma spectroscopy experiments.
- Predicts which odd super heavy nuclei can be identified by α + X-ray.

D.E. Ward, B.G. Carlsson, S. Åberg PRC 88, 064316 (2013) D.E. Ward, B.G. Carlsson, S. Åberg, to be published

Thank you for your attention!

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 …の�?