

Decay experiments at RIKEN: neutron-rich Sm & Gd isotopes

Zena Patel University of Surrey

Radioactive Isotope Beam Factory: RIBF

BigRIPS & ZeroDegrees

BigRIPS detectors

PPAC: Parallel Plate **Avalanche Counter** \rightarrow trajectory of particle

TEGIC: Tilted Electrode Gas Ionisation Chamber \rightarrow energy loss of particle

Plastic detectors \rightarrow TOF of particle

WAS3ABI & EURICA

WAS3ABI: Wide-range Active Silicon-Strip Stopper Array for Beta and Ion detection Upto 5 DSSDs

•60x40 1mm strips

EURICA: Euroball RIKEN Cluster Array

•84 HPGe crystals in 12x7 clusters from the RISING array

 Analogue & digital branches for energy & timing •LaBr₃(Ce) (Surrey & Brighton) and plastics

The nuclear landscape

Published results: 131In

131In = 1 proton hole nucleus w.r.t. 132Sn

New single-particle state (red) in 131In used for shell model calculations below N=82

No evidence for a Z=40 subshell closure at N=82

J. Taprogge et. al. Phys. Rev. Lett. 112, 132501 (2014)

Published results: 126,128Pd

H. Watanabe et. al. Phys. Rev. Lett. 111, 152501 (2013)

Published results: β decay around 78Ni

Z. Y. Xu et. al. Phys. Rev. Lett. 113, 032505 (2014)

Fast timing data: 104Zr

Previously measured as: $\tau(2+) = 2.9(4)$ ns

F. Browne, University of Brighton

•Maximum deformation expected at doubly mid-shell region •Closed-shell nuclei \rightarrow "waiting points" of the r process •REP \rightarrow mid-shell nuclear deformation

K isomers

•Nuclear deformation \rightarrow K isomers •Quasiparticle configuration \rightarrow spin projections, K, on symmetry axis

Transitions can be forbidden by ΔK≤λ

•K-forbiddenness \rightarrow long-lived states: K isomers

•Use to probe low-lying excited states

Collectivity

Measures of collectivity:

$$E_{rot}(J) = \frac{\hbar^2}{2I}J(J+1)$$

$$R(4^+/2^+) = \frac{E_{rot}(4^+)}{E_{rot}(2^+)}$$
$$B(E2) \propto \frac{1}{\tau}$$

$$4^{+} \underbrace{\mathsf{Rotational Band}}_{2^{+}} \underbrace{E_{\gamma}(4^{+} \rightarrow 2^{+})}_{0^{+}} \underbrace{E_{\gamma}(2^{+} \rightarrow 0^{+})}_{\mathbf{Ground State}}$$

B(E2) = transition strength I = moment of inertia, proportional to deformation J= spin of state

In-beam PID

Prompt flash removed to reduce background in spectrum

Fixed time cut for γ intensities

Half-life found from strong γs

Z. Patel et. al. Phys. Rev. Lett. 113, 262502 (2014)

166Gd level scheme

Level scheme based on γ-γ coincidences
Transition multipolarities from intensity balance
Fragment of 2-qp band → 4+ bandhead

Z. Patel et. al. Phys. Rev. Lett. **113**, 262502 (2014)

164Sm: γ spectroscopy

Z. Patel et. al. Phys. Rev. Lett. 113, 262502 (2014)

PES calculations

Potential energy surface calculations minimised in β_2 , β_4 , β_6 deformation space with γ =0

Nucleus	K	config.	E _x (MeV)	E _x (MeV) exp.
166Gd	6-	v5/2 ⁻ [512] x v7/2 ⁺ [633]	1.288	1.601
166Gd	4+	π3/2+[411] x π5/2+[413]	1.300	1.350
164Sm	6-	v5/2 ⁻ [512] x v7/2 ⁺ [633]	1.301	1.416+E(2+)

Energy systematics

Most deformed N=102 nuclei to date
Highlights an increase at N=100: deformation minimum or shell gap
Most calculations → maximum deformation at N=104
PES calculations → maximum deformation at N=100, 102

Deformed shell gap

L. Satpathy & S. K. Patra predict a deformed shell gap at N=100 from S_{2n}
 Our systematics support a deformed shell gap
 This will influence r-process calculations

260 240 📥 Dy 🔶 Er 2+) keV 220 → Yb 200 E(4+ 180 160 140-98 100 102 104 94 96 106 92 Ν

L. Satpathy and S.K. Patra Nucl. Phys. A722, C24 (2003)

Data from 164Sm & 166Gd → first evidence of a deformed shell gap at N=100

Using the RIBF we can probe further away from stability into neutron-rich regions

We can get information on excited states for nuclei with a very small yield

Thank you for your attention.

Collaborators:

P.-A. Soderstrom,¹ Zs. Podolyak,² P. H. Regan,² P. M. Walker,² H. Watanabe,^{2,4,5} E. Ideguchi,^{6,7} G. S. Simpson,⁸ H. L. Liu,⁹ S. Nishimura,² Q. Wu,¹⁰ F. R. Xu,¹⁰
F. Browne,^{2,11} P. Doornenbal,² G. Lorusso,² S. Rice,^{1,2} L. Sinclair,^{2,12} T. Sumikama,¹³
J. Wu,^{2,10} Z.Y. Xu,¹⁴ N. Aoi,^{6,7} H. Baba,² F. L. Bello Garrote,¹⁵ G. Benzoni,¹⁶ R. Daido,⁷ Y. Fang,⁷ N. Fukuda,² G. Gey,⁸ S. Go,¹⁷ A. Gottardo,¹⁸ N. Inabe,² T. Isobe,²
D. Kameda,² K. Kobayashi,¹⁹ M. Kobayashi,¹⁷ T. Komatsubara,^{20,21} I. Kojouharov,²²
T. Kubo,² N. Kurz,²² I. Kuti,²³ Z. Li,²⁴ M. Matsushita,¹⁷ S. Michimasa,¹⁷ C.-B. Moon,²⁵
H. Nishibata,⁷ I. Nishizuka,¹³ A. Odahara,⁷ E. Şahin,¹⁵ H. Sakurai,^{2,14} H. Schaffner,²² H. Suzuki,² H. Takeda,² M. Tanaka,⁷ J. Taprogge,^{26,27} Zs. Vajta,²³ A. Yagi,⁷ and R. Yokoyama¹⁷

¹RIKEN Nishina Center ²University of Surrey ³NPL, Teddington ^{4,5}Beihang University ^{6,7}Osaka University ⁸LPSC, Universite Joseph Fourier/INPG, Grenoble ⁹Xi'an Jiaotong University ¹⁰Peking University ¹¹University of Brighton ¹²University of York ¹³Tohoku University ¹⁴University of Tokyo ¹⁵University of Oslo ¹⁶INFN, Milano ¹⁷CNS, University of Tokyo ¹⁸INFN, Legnaro ¹⁹Rikkyo University ²⁰University of Tsukuba ²¹Institute for Basic Science, Korea ²² GSI, Darmstadt ²³ATOMKI ²⁴Peking University ²⁵Hoseo University ²⁶CSIC, Madrid ²⁷Universidad Autonoma