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Part I: Introduction

A SIMD-vectorized geometry prototype: goals and lessons 
learned

Current developments:  A generic high performance 
geometry library

Part II: Prototype phase

Part III: VecGeom: current developments

Very short intro to Geant-V
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Introduction and recap of status of 
many-particle vectorization prototype
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The Eight performance dimensions
n The “dimensions of performance”

q Vectors (SIMD)
q Instruction Pipelining 
q Instruction Level Parallelism (ILP) 
q Hardware threading 
q Clock frequency 
q Multi-core 
q Multi-socket 
q Multi-node

Possibly running different
jobs as we do now is the
best solution

} Gain in memory footprint 
and time-to-solution
but not in throughput

Micro-parallelism: gain 
in throughput and 
in time-to-solution

slide by F. Carminati
4
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Key observation for Geant-V: Classical HEP transport 
is mostly local

slide by F. Carminati

• To make use of SIMD microparallelism 
we need “data” parallelism: multiple data 
on which to operate same instructions
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Key observation for Geant-V: Classical HEP transport 
is mostly local

slide by F. Carminati

• To make use of SIMD microparallelism 
we need “data” parallelism: multiple data 
on which to operate same instructions

ATLAS volumes sorted by transport time. The same 
behavior is observed for most HEP geometries.

50 per cent of the 
time spent in 0.7% 

volumes

• benchmarks have shown that in simulation 
50 percent of CPU time is spent in small 
number of logical volumes of detector

• idea: interleave multiple events in 
simulation and group particles by logical 
volume = basket of particles

data parallelism in 
a logical volume;

same geometry code; 
shared physics code

5



Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

typical geometry task in particle tracking:  find next hitting 
boundary and get distance to it

Vectorizing geometry: The problem statement 

1 particle

x1

d1

s

functionality provided by 
existing code (Geant4, ROOT,...)
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1st Step: Vector Processing in Elementary 
Geometry Algorithms

x1

d1

s

1 particle

x1

d1

s

x4

x2

x3

vector of  N particles

distFromInside
mothervolume

distFromInside
mothervolume

SIMD

1 result N results

Provide new interfaces to process baskets in elementary 
geometry algorithms 

make efficient use of baskets and try to use SIMD vector instructions 
wherever possible (throughput optimization)

1. Milestone

Goal: Enable geometry components to process baskets/
vectors of data and study performance opportunities
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2nd step: Vector processing in complex algorithms:

transform 
coordinates to 
daughter frame

distToOutside
daughtervol

update step + 
boundary

NE
XT
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E 
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E

distFromInside
mothervolume

pick next 
daughter volume

single particle flow

each particles undergoes a 
series of basic algorithms (with 
outer loop over particles)

x1

d1

s

x4

x2

x3
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Each algorithm takes a basket 
of particles and spits out 
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less function calls!

SIMD (SSE, AVX ) instructions
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SIMD Vectorization Programming model

How to (particle) vectorize existing code (with many branches...) ?               

9

Option A (“free lunch”):
put code into a loop and let the compiler do the work

 works in very few cases
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SIMD Vectorization Programming model

How to (particle) vectorize existing code (with many branches...) ?               

9

Option A (“free lunch”):
put code into a loop and let the compiler do the work

 works in very few cases

Option B (“convince the compiler”):
refactor the code to make it “auto-vectorizer” friendly

 might work but strongly compiler dependent

http://code.compeng.uni-frankfurt.de/projects/vc

Option C (“use SIMD library”):

refactor the code and perform explicit vectorization using 
a vectorization library

 always SIMD vectorizes, compiler independent
 excellent experience with the Vc library
 other libraries exist: VectorType (Agner Fog), Boost::SIMD, ... 

// hello world example with Vc-SIMD types
Vc::Vector<double> a, b, c;
c=a+b;

9
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“Option A: Free lunch vectorization”

bool contains( const double * point ){
    for( unsigned int dir=0; dir < 3; ++dir ){

if( fabs (point[dir]-origin[dir]) > boxsize[dir] )                        
return false;

    }
    return true;
}

starting point: some existing code (here easy example)

void contains_v( const double * point, bool * isin, int np ) {
    for( unsigned int k=0; k < np; ++k) {
        isin[k]=contains( &point[3*k] );
}}

provide vector-interface, call basic/elemental function ... and 
hope that compiler autovectorizes ...

x1

x2

x3

x4

x5

no auto-

vecto
riz

atio
n*
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void contains_v_autovec( const P & points, bool *  isin, int np ){
  for (int k=0; k < np; ++k)
  {
      bool resultx=(fabs (point.coord[0][k]-origin[0]) > boxsize[0]);
      bool resulty=(fabs (point.coord[1][k]-origin[1]) > boxsize[1]);
      bool resultz=(fabs (point.coord[2][k]-origin[2]) > boxsize[2]);
      isin[k]=resultx & resulty & resultz;
}}

Option B: convince the compiler 

this is only version that autovectorizes uncondionally with all 
compilers tested (icc 13, gcc 4.7/4.8)

massage/refactor original code to make the compiler autovectorize

copy scalar code to new function ( "manual inline" )

AOS - SOA conversion of data layout

early - return removal

manual loop unrolling

uncondionally: no pragmas or further platform/compiler dependent 
hints

11
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Option C: Use vector library/classes

void contains_v_Vc( const P & points, bool *  isin, int np )
{
  for( int k=0; k < np; k+=Vc::double_v::Size)
  {
      Vc::double_m inside;     
      inside  = (abs (Vc::double_v(point.coord[0][k])-origin[0]) < boxsize[0]);
      inside&= (abs (Vc::double_v(point.coord[1][k])-origin[1]) < boxsize[1]);
      inside&= (abs (Vc::double_v(point.coord[2][k])-origin[2]) < boxsize[2]);
      // write mask as boolean result
      for (int j=0;j<Vc::double_v::Size;++j){
          isin[k+j]=inside[j];
      }
}

almost same code as before using Vc library ( see talk yesterday )
always vectorizes; don’t have to convince compiler
excellent performance ( automatically uses aligned data )
can mix vector context and scalar context ( code )
given that we have to refactor code anyway, this is our implementation 
choice

12
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Status of simple shape/algorithm investigations

provided optimized code to simple shapes (box, tube, cone) for functions
“ DistToInside”, “DistToOutside”, “Safety”, “IsInside/Contains”

here: using the ROOT shapes 

For simple shapes the performance gains match our expectations
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Benchmark higher level navigation algorithm

endcap (cone)

plate detectors

beampipe (tube)

tubular shield

implemented a toy detector for a benchmark (“not to easy; not too complex”): 2 tubes, 4 
plate detectors, 2 endcaps (cones), 1 tubular mother volume

Logical volume filled with testparticle pool (random 
position and random direction) from which we use 
a subset N for benchmarks (P repetitions)

14
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Benchmark Results: Overall Runtime ( CHEP13 )
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Figure 3. Results from the benchmark comparing the scalar and sequential algorithm with a
vector-oriented algorithm and various degrees of usage of SIMD instructions (from scalar fallback
to AVX). (a) Comparison of the runtime per particle showing a speedup factor of roughly 3
comparing the original version to the AVX code. (b) Comparison of actual instructions executed
per particle.

Table 1. Dynamic instruction count statistics for instructions executed in the actual algorithm
of Figure 1. Shown are what fractions ot the total instruction number are taken by simple
memory moves (MOV), call instructions (CALL), SIMD instructions (ALL SIMD) as well as
arithmic SIMD instructions (ARITHM SIMD). These numbers are obtained for 16 particles
and a comparison is done between the four algorithmic versions mentioned in the text. Some
absolute numbers are given in [] brackets (with an arbitrary but consistent scale).

Instruction (type) ROOT seq VEC(noSIMD) VEC(SSE4) VEC(AVX)

ALL [17554373] [10608655] [9230632] [5024520]
MOV 0.296 [5211457] 0.116 [1227198] 0.132 [1217347] 0.163 [819813]
CALL 0.036 [634933] 0.0023 [24601] 0.0026 [24601] 0.0048 [24601]
ALL SIMD 0.043 0.188 0.641 0.57
ARITHM SIMD 0.023 0.039 0.289 0.30

instruction sets SSE4 and AVX) then give the actual gains from microparallelism.6 We can track
the origin of the gains somewhat in analyzing the dynamic instruction mix actually executed
in the benchmark. Some important numbers obtained from this analysis are summarized in
Table 1. Essentially, it can be seen that going from a scalar to vector interface allows to reduce
the number of function call instructions accompanied by a massive reduction in simple memory
moves (such as to save registers on the stack). Further, when introducing SIMD optimisations
with Vc, the overall number of instructions further shrinks and the CPU vector unit is used
to a much higher degree. Using the hardware performance counters, we have also confirmed
that the number of instruction cache misses is considerable reduced due to better code locality
of using the vectorised interfaces. We expect this e↵ect to become even more important with
more complex algorithms. It should be noted that the current numbers are a first optimistic
results. As such they define a new baseline for possible next iterations of optimisations, which
6 We should mention that these number may be influenced by other factors that were optimized in the porting
process; for instance: removal of check whether to calculate safety within some functions.

CHEP13 paper: http://arxiv.org/pdf/1312.0816.pdf
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Further Metrics: Executed Instructions
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gain mainly due to 
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Table 1. Dynamic instruction count statistics for instructions executed in the actual algorithm
of Figure 1. Shown are what fractions ot the total instruction number are taken by simple
memory moves (MOV), call instructions (CALL), SIMD instructions (ALL SIMD) as well as
arithmic SIMD instructions (ARITHM SIMD). These numbers are obtained for 16 particles
and a comparison is done between the four algorithmic versions mentioned in the text. Some
absolute numbers are given in [] brackets (with an arbitrary but consistent scale).
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instruction sets SSE4 and AVX) then give the actual gains from microparallelism.6 We can track
the origin of the gains somewhat in analyzing the dynamic instruction mix actually executed
in the benchmark. Some important numbers obtained from this analysis are summarized in
Table 1. Essentially, it can be seen that going from a scalar to vector interface allows to reduce
the number of function call instructions accompanied by a massive reduction in simple memory
moves (such as to save registers on the stack). Further, when introducing SIMD optimisations
with Vc, the overall number of instructions further shrinks and the CPU vector unit is used
to a much higher degree. Using the hardware performance counters, we have also confirmed
that the number of instruction cache misses is considerable reduced due to better code locality
of using the vectorised interfaces. We expect this e↵ect to become even more important with
more complex algorithms. It should be noted that the current numbers are a first optimistic
results. As such they define a new baseline for possible next iterations of optimisations, which
6 We should mention that these number may be influenced by other factors that were optimized in the porting
process; for instance: removal of check whether to calculate safety within some functions.
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Table 1. Dynamic instruction count statistics for instructions executed in the actual algorithm
of Figure 1. Shown are what fractions ot the total instruction number are taken by simple
memory moves (MOV), call instructions (CALL), SIMD instructions (ALL SIMD) as well as
arithmic SIMD instructions (ARITHM SIMD). These numbers are obtained for 16 particles
and a comparison is done between the four algorithmic versions mentioned in the text. Some
absolute numbers are given in [] brackets (with an arbitrary but consistent scale).
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instruction sets SSE4 and AVX) then give the actual gains from microparallelism.6 We can track
the origin of the gains somewhat in analyzing the dynamic instruction mix actually executed
in the benchmark. Some important numbers obtained from this analysis are summarized in
Table 1. Essentially, it can be seen that going from a scalar to vector interface allows to reduce
the number of function call instructions accompanied by a massive reduction in simple memory
moves (such as to save registers on the stack). Further, when introducing SIMD optimisations
with Vc, the overall number of instructions further shrinks and the CPU vector unit is used
to a much higher degree. Using the hardware performance counters, we have also confirmed
that the number of instruction cache misses is considerable reduced due to better code locality
of using the vectorised interfaces. We expect this e↵ect to become even more important with
more complex algorithms. It should be noted that the current numbers are a first optimistic
results. As such they define a new baseline for possible next iterations of optimisations, which
6 We should mention that these number may be influenced by other factors that were optimized in the porting
process; for instance: removal of check whether to calculate safety within some functions.
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Current performance status (April 14)

since CHEP13, have improved the algorithms further 
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Current performance status (April 14)

since CHEP13, have improved the algorithms further 

17

distFromInside
mothervolume

pick next 
daughter volume

transform 
coordinates to 
daughter frame

distToOutside
daughtervol

update step + 
boundary

vector flow

SIMD

SIMD

SIMD

SIMD

16 particles 1024 particles SIMD MAX

Intel 
IvyBridge 

(AVX)
~2.8x ~4.0x 4x

Intel Haswell 
(AVX2) ~3.0x ~5.0x 4x

Intel Xeon-
Phi

(AVX512)
~4.1x ~4.8x 8x

Xeon-Phi and Haswell benchmarks by CERN Openlab (Georgios Bitzes) 
gcc 4.8; -O3 -funroll-loops -mavx; no FMA

good overall performance gains for navigation algorithm (in toy 
detector with 4 boxes, 3 tubes, 2 cones) - compared to ROOT/5.34.17
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Improving vectorization: C++ template techniques

a lot of branches in geometry code just distinguish between “static” properties of 
class instances

general “tube solid” class distinguishes at runtime between “FullTube”, “Hollow Tube” ...  

18

FullTubePhiFullTube HollowTube

“branches are the enemy of vectorization...”
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Improving vectorization: C++ template techniques

a lot of branches in geometry code just distinguish between “static” properties of 
class instances

general “tube solid” class distinguishes at runtime between “FullTube”, “Hollow Tube” ...  

18

FullTubePhiFullTube HollowTube

“branches are the enemy of vectorization...”

AbstractTube

Safety
DistanceToIn

SpecializedTube
 TubeType

we employ template techniques to:

evaluate and reduce “static” branches at compile time 

to generate binary code specialized to concrete solid instances

➡ makes vectorization more efficient

➡ allows better compiler optimizations in scalar code

18
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Beyond the prototype: Towards a 
general high performance library for 

detector geometry

19

Georgios Bitzes ( CERN Openlab ) 
Johannes De Fine Licht ( CERN technical student ) 
Guilherme Lima ( Fermilab )

“vectorization everywhere”
“architecture abstraction”

“reusable generic components”

with contributions from

19
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Where do we go from here?

It is now time to put these experiences/results into 
practice and provide a complete vectorized geometry 
library for simulation packages

20
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Challenges from the software development 
perspective

Lessons learned in small prototype
in prototype, had to refactor or rewrite code completely to achieve 
vectorization

vector code exists in addition to scalar code

Should we follow same approach to port large existing code base in 
Geant4/ROOT/USolids geometry library?

maintenance nightmare

validation nightmare

Clearly the answer is no: It would be nice to have code which can be 
used in both scalar and vector context ( to large extentd )

21
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Challenges continued

How can we reuse the same code on the CPU + GPU? 
the geometry library should be usable on different architectures

A vector friendly CPU functions is a good starting point for a kernel on 
the GPU; GPU could just reuse vector kernel in a different context

How can we benefit from future advances in compiler 
technology (autovectorization)?

expressing algorithms with Vc often makes them suitable for 
autovectorization

we would like to stay flexible and possibly benefit from advances in this 
area 

How can we make code platform independent + vector 
implementation independent?

How can we play with other vector library implementations?

We’d like to use the best option available on a case by case basis ( Vc, 
Boost::Simd,  VectorClass (Agner Fog) as a function of performance and 
platform

22
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“Generic programming”

Generic programming with C++ templates provides the solution 
to all those problems

has been around for a long time and is among the few high-performance 
techniques of C++

not much used in HEP codes ( at least not in simulation )

here, a very good option ( inside a library implementation, almost not 
much user code ) and probably almost without alternative

same approach as Vc ( for instance ) at a slightly higher level

works very well with NVidia CUDA

not ( really ) supported by pure OpenCL ...

Generic programming 

23
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template<typename	  BaseDType,	  typename	  BaseIType>
void	  ConstBzFieldHelixStepper::DoStep(
	  	  	  	  	  	  	  	  	  	  	  	  BaseDType	  const	  &	  x0,	  BaseDType	  const	  &	  y0,	  BaseDType	  const	  &	  z0,
	  	  	  	  	  	  	  	  	  	  	  	  BaseDType	  const	  &	  dx0,	  BaseDType	  const	  &	  dy0,	  BaseDType	  const	  &	  dz0,
	  	  	  	  	  	  	  	  	  	  	  	  BaseIType	  const	  &	  charge,	  BaseDType	  const	  &	  momentum,	  BaseDType	  const	  &	  step,
	  	  	  	  	  	  	  	  	  	  	  	  BaseDType	  &	  x,	  BaseDType	  &	  y,	  BaseDType	  &	  z,
	  	  	  	  	  	  	  	  	  	  	  	  BaseDType	  &	  dx,	  BaseDType	  &	  dy,	  BaseDType	  &	  dz
	  	  	  	  	  	  	  	  	  	  	  )	  const
	  	  {
	  	  	  	  	  	  const	  double	  kB2C_local	  =	  -‐0.299792458e-‐3;
	  	  	  	  	  	  BaseDType	  dt	  =	  sqrt((dx0*dx0)	  +	  (dy0*dy0));
	  	  	  	  	  	  BaseDType	  invnorm=1./dt;
	  	  	  	  	  	  BaseDType	  R	  =	  momentum*dt/((kB2C_local*BaseDType(charge))*(fBz));
	  	  	  	  	  	  BaseDType	  cosa=	  dx0*invnorm;
	  	  	  	  	  	  BaseDType	  sina=	  dy0*invnorm;
	  	  	  	  	  	  BaseDType	  helixgradient	  =	  dz0*invnorm*abs(R);
	  
//	  some	  code	  omitted	  ...	  
	  
	  	  	  	  	  	  	  x	  =	  x0	  +	  R*(	  -‐sina	  +	  cosphi*sina	  +	  sinphi*cosa	  ));
	  	  	  	  	  	  	  y	  =	  y0	  +	  R*(	  cosa	  	  +	  sina*sinphi	  -‐	  cosphi*cosa	  ));
	  	  	  	  	  	  	  z	  =	  z0	  +	  helixgradient*phi;
	  
	  	  	  	  	  	  	  dx	  =	  dx0	  *	  cosphi	  -‐	  sinphi	  *	  dy0;
	  	  	  	  	  	  	  dy	  =	  dx0	  *	  sinphi	  +	  cosphi	  *	  dy0;
	  	  	  	  	  	  	  dz	  =	  dz0;
	  	  }

A simple example for the generic approach
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Example code for propagation of particles in a constant magnetic field ...
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template<typename	  BaseDType,	  typename	  BaseIType>
void	  ConstBzFieldHelixStepper::DoStep(
	  	  	  	  	  	  	  	  	  	  	  	  BaseDType	  const	  &	  x0,	  BaseDType	  const	  &	  y0,	  BaseDType	  const	  &	  z0,
	  	  	  	  	  	  	  	  	  	  	  	  BaseDType	  const	  &	  dx0,	  BaseDType	  const	  &	  dy0,	  BaseDType	  const	  &	  dz0,
	  	  	  	  	  	  	  	  	  	  	  	  BaseIType	  const	  &	  charge,	  BaseDType	  const	  &	  momentum,	  BaseDType	  const	  &	  step,
	  	  	  	  	  	  	  	  	  	  	  	  BaseDType	  &	  x,	  BaseDType	  &	  y,	  BaseDType	  &	  z,
	  	  	  	  	  	  	  	  	  	  	  	  BaseDType	  &	  dx,	  BaseDType	  &	  dy,	  BaseDType	  &	  dz
	  	  	  	  	  	  	  	  	  	  	  )	  const
	  	  {
	  	  	  	  	  	  const	  double	  kB2C_local	  =	  -‐0.299792458e-‐3;
	  	  	  	  	  	  BaseDType	  dt	  =	  sqrt((dx0*dx0)	  +	  (dy0*dy0));
	  	  	  	  	  	  BaseDType	  invnorm=1./dt;
	  	  	  	  	  	  BaseDType	  R	  =	  momentum*dt/((kB2C_local*BaseDType(charge))*(fBz));
	  	  	  	  	  	  BaseDType	  cosa=	  dx0*invnorm;
	  	  	  	  	  	  BaseDType	  sina=	  dy0*invnorm;
	  	  	  	  	  	  BaseDType	  helixgradient	  =	  dz0*invnorm*abs(R);
	  
//	  some	  code	  omitted	  ...	  
	  
	  	  	  	  	  	  	  x	  =	  x0	  +	  R*(	  -‐sina	  +	  cosphi*sina	  +	  sinphi*cosa	  ));
	  	  	  	  	  	  	  y	  =	  y0	  +	  R*(	  cosa	  	  +	  sina*sinphi	  -‐	  cosphi*cosa	  ));
	  	  	  	  	  	  	  z	  =	  z0	  +	  helixgradient*phi;
	  
	  	  	  	  	  	  	  dx	  =	  dx0	  *	  cosphi	  -‐	  sinphi	  *	  dy0;
	  	  	  	  	  	  	  dy	  =	  dx0	  *	  sinphi	  +	  cosphi	  *	  dy0;
	  	  	  	  	  	  	  dz	  =	  dz0;
	  	  }

A simple example for the generic approach

24

Example code for propagation of particles in a constant magnetic field ...

actual code read 
(almost) as usual

abstract types
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template<typename	  BaseDType,	  typename	  BaseIType>
void	  ConstBzFieldHelixStepper::DoStep(
	  	  	  	  	  	  	  	  	  	  	  	  BaseDType	  const	  &	  x0,	  BaseDType	  const	  &	  y0,	  BaseDType	  const	  &	  z0,
	  	  	  	  	  	  	  	  	  	  	  	  BaseDType	  const	  &	  dx0,	  BaseDType	  const	  &	  dy0,	  BaseDType	  const	  &	  dz0,
	  	  	  	  	  	  	  	  	  	  	  	  BaseIType	  const	  &	  charge,	  BaseDType	  const	  &	  momentum,	  BaseDType	  const	  &	  step,
	  	  	  	  	  	  	  	  	  	  	  	  BaseDType	  &	  x,	  BaseDType	  &	  y,	  BaseDType	  &	  z,
	  	  	  	  	  	  	  	  	  	  	  	  BaseDType	  &	  dx,	  BaseDType	  &	  dy,	  BaseDType	  &	  dz
	  	  	  	  	  	  	  	  	  	  	  )	  const
	  	  {
	  	  	  	  	  	  const	  double	  kB2C_local	  =	  -‐0.299792458e-‐3;
	  	  	  	  	  	  BaseDType	  dt	  =	  sqrt((dx0*dx0)	  +	  (dy0*dy0));
	  	  	  	  	  	  BaseDType	  invnorm=1./dt;
	  	  	  	  	  	  BaseDType	  R	  =	  momentum*dt/((kB2C_local*BaseDType(charge))*(fBz));
	  	  	  	  	  	  BaseDType	  cosa=	  dx0*invnorm;
	  	  	  	  	  	  BaseDType	  sina=	  dy0*invnorm;
	  	  	  	  	  	  BaseDType	  helixgradient	  =	  dz0*invnorm*abs(R);
	  
//	  some	  code	  omitted	  ...	  
	  
	  	  	  	  	  	  	  x	  =	  x0	  +	  R*(	  -‐sina	  +	  cosphi*sina	  +	  sinphi*cosa	  ));
	  	  	  	  	  	  	  y	  =	  y0	  +	  R*(	  cosa	  	  +	  sina*sinphi	  -‐	  cosphi*cosa	  ));
	  	  	  	  	  	  	  z	  =	  z0	  +	  helixgradient*phi;
	  
	  	  	  	  	  	  	  dx	  =	  dx0	  *	  cosphi	  -‐	  sinphi	  *	  dy0;
	  	  	  	  	  	  	  dy	  =	  dx0	  *	  sinphi	  +	  cosphi	  *	  dy0;
	  	  	  	  	  	  	  dz	  =	  dz0;
	  	  }

A simple example for the generic approach
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Demonstrated use of 
this code in:
a) scalar sense
b) vectorization with Vc
c) autovectorization with        
Intel compiler
d) as the basis for a CUDA 
kernel

excellent for maintenance

Example code for propagation of particles in a constant magnetic field ...

actual code read 
(almost) as usual

abstract types
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“VecGeom”

A project “VecGeom” was started to put those ideas into practice for 
the geometry

merged with AIDA Unified Solids effort 

https://github.com/sawenzel/VecGeom.git

current implementation status:
library abstraction layer to provide some abstractions on concepts that differ 
in various backends ( masks, masked assignments, math functions, loopers ) 

generic templated implementations for few shapes ( box, para, tube, cone )

geometry hierarchies on CPU and GPU 

can be basis for GPU + Geant-V simulation prototypes ( already used )

much reduced actual code base compared to previous situation with different 
versions for scalar and vector code
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Performance

optimized many 
particle treatment

template techniques

template class 
specialization / code 
generation

SIMD

algo + class  
review

Vc library

Goals

Approach
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The prototype: summary
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VecGeom : overview

optimized 1-
particle functions

Abstraction Code reuse

Cilk Plus autovectorization Boost::SIMD

optimized base   
types / containers

SIMD abstraction

CPU/GPU abstraction

reusable components

same code base for 
CPU/GPU where 
appropriate

generic programming

?
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Summary
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Part II: 

promoted use of generic programming in HEP codes; working 
towards general high-performance geometry library that is

 flexible, 

 portable, 

 performant,

 maintainable due to reduced code size

Part I:  

promising SIMD results in geometry demonstrator

promoted use of vectorization in simulation codes
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