
 Vectorizing the geometry library for
simulation

-- experience and results from a prototype
and future directions --

5th International Workshop on Future Challenges in
Tracking and Trigger

Sandro Wenzel / CERN-PH-SFT
(for the GPU simulation+ Geant-V prototypes)

This is an output file created in Illustrator CS3

Colour reproduction
The badge version must only be reproduced on a
plain white background using the correct blue:
 Pantone: 286
 CMYK: 100 75 0 0
 RGB: 56 97 170
 Web: #3861AA

Where colour reproduction is not faithful, or the
background is not plain white, the logo should be
reproduced in black or white – whichever provides
the greatest contrast. The outline version of the
logo may be reproduced in another colour in
instances of single-colour print.

Clear space
A clear space must be respected around the logo:
other graphical or text elements must be no closer
than 25% of the logo’s width.

Placement on a document
Use of the logo at top-left or top-centre of a
document is reserved for official use.

Minimum size
Print: 10mm
Web: 60px

CERN Graphic Charter: use of the outline version of the CERN logo 1

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger

Outline

2

Part I: Introduction

A SIMD-vectorized geometry prototype: goals and lessons
learned

Current developments: A generic high performance
geometry library

Part II: Prototype phase

Part III: VecGeom: current developments

Very short intro to Geant-V

2

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger

Introduction and recap of status of
many-particle vectorization prototype

3

Marilena Bandieramonte (University of Catania, Italy)
Georgios Bitzes (CERN Openlab)
Laurent Duhem (Intel)
Raman Sehgal (BARC, India)
Juan Valles (CERN summer student)

with contributions from

3

The Eight performance dimensions
n The “dimensions of performance”

q Vectors (SIMD)
q Instruction Pipelining
q Instruction Level Parallelism (ILP)
q Hardware threading
q Clock frequency
q Multi-core
q Multi-socket
q Multi-node

Possibly running different
jobs as we do now is the
best solution

} Gain in memory footprint
and time-to-solution
but not in throughput

Micro-parallelism: gain
in throughput and
in time-to-solution

slide by F. Carminati
4

The Eight performance dimensions
n The “dimensions of performance”

q Vectors (SIMD)
q Instruction Pipelining
q Instruction Level Parallelism (ILP)
q Hardware threading
q Clock frequency
q Multi-core
q Multi-socket
q Multi-node

Possibly running different
jobs as we do now is the
best solution

} Gain in memory footprint
and time-to-solution
but not in throughput

Micro-parallelism: gain
in throughput and
in time-to-solution

slide by F. Carminati

used by Geant4-MT
(event parall.)

4

The Eight performance dimensions
n The “dimensions of performance”

q Vectors (SIMD)
q Instruction Pipelining
q Instruction Level Parallelism (ILP)
q Hardware threading
q Clock frequency
q Multi-core
q Multi-socket
q Multi-node

Possibly running different
jobs as we do now is the
best solution

} Gain in memory footprint
and time-to-solution
but not in throughput

Micro-parallelism: gain
in throughput and
in time-to-solution

slide by F. Carminati

used by Geant4-MT
(event parall.)

targeted by Geant-V
(track parall.)

4

Key observation for Geant-V: Classical HEP transport
is mostly local

slide by F. Carminati

• To make use of SIMD microparallelism
we need “data” parallelism: multiple data
on which to operate same instructions

5

Key observation for Geant-V: Classical HEP transport
is mostly local

slide by F. Carminati

• To make use of SIMD microparallelism
we need “data” parallelism: multiple data
on which to operate same instructions

ATLAS volumes sorted by transport time. The same
behavior is observed for most HEP geometries.

50 per cent of the
time spent in 0.7%

volumes

• benchmarks have shown that in simulation
50 percent of CPU time is spent in small
number of logical volumes of detector

• idea: interleave multiple events in
simulation and group particles by logical
volume = basket of particles

data parallelism in
a logical volume;

same geometry code;
shared physics code

5

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

typical geometry task in particle tracking: find next hitting
boundary and get distance to it

Vectorizing geometry: The problem statement

1 particle

x1

d1

s

functionality provided by
existing code (Geant4, ROOT,...)

6

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

typical geometry task in particle tracking: find next hitting
boundary and get distance to it

Vectorizing geometry: The problem statement

1 particle

x1

d1

s

functionality provided by
existing code (Geant4, ROOT,...)

vectors of particles

x1

d1

s

x4

x2

x3

functionality targeted by future
simulation approaches

aim for efficient utilization of
current and future hardware

6

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

typical geometry task in particle tracking: find next hitting
boundary and get distance to it

Vectorizing geometry: The problem statement

1 particle

x1

d1

s

functionality provided by
existing code (Geant4, ROOT,...)

vectors of particles

x1

d1

s

x4

x2

x3

functionality targeted by future
simulation approaches

aim for efficient utilization of
current and future hardware

➡ prototype study started ~04/2013

6

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

1st Step: Vector Processing in Elementary
Geometry Algorithms

x1

d1

s

1 particle

x1

d1

s

x4

x2

x3

vector of N particles

distFromInside
mothervolume

distFromInside
mothervolume

SIMD

1 result N results

Provide new interfaces to process baskets in elementary
geometry algorithms

make efficient use of baskets and try to use SIMD vector instructions
wherever possible (throughput optimization)

1. Milestone

Goal: Enable geometry components to process baskets/
vectors of data and study performance opportunities

7

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

2nd step: Vector processing in complex algorithms:

transform
coordinates to
daughter frame

distToOutside
daughtervol

update step +
boundary

NE
XT

 P
AR

TI
CL

E
IN

 V
O

LU
M

E

distFromInside
mothervolume

pick next
daughter volume

single particle flow

each particles undergoes a
series of basic algorithms (with
outer loop over particles)

x1

d1

s

x4

x2

x3

8

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

2nd step: Vector processing in complex algorithms:

transform
coordinates to
daughter frame

distToOutside
daughtervol

update step +
boundary

NE
XT

 P
AR

TI
CL

E
IN

 V
O

LU
M

E

distFromInside
mothervolume

pick next
daughter volume

single particle flow

each particles undergoes a
series of basic algorithms (with
outer loop over particles)

distFromInside
mothervolume

pick next
daughter volume

transform
coordinates to
daughter frame

distToOutside
daughtervol

update step +
boundary

vector flow

SIMD

SIMD

SIMD

SIMD

Each algorithm takes a basket
of particles and spits out
vectors to the next algorithms

2nd step

x1

d1

s

x4

x2

x3

8

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

2nd step: Vector processing in complex algorithms:

transform
coordinates to
daughter frame

distToOutside
daughtervol

update step +
boundary

NE
XT

 P
AR

TI
CL

E
IN

 V
O

LU
M

E

distFromInside
mothervolume

pick next
daughter volume

single particle flow

each particles undergoes a
series of basic algorithms (with
outer loop over particles)

distFromInside
mothervolume

pick next
daughter volume

transform
coordinates to
daughter frame

distToOutside
daughtervol

update step +
boundary

vector flow

SIMD

SIMD

SIMD

SIMD

Each algorithm takes a basket
of particles and spits out
vectors to the next algorithms

less function calls!

SIMD (SSE, AVX) instructions

better code locality (icache)

2nd step

x1

d1

s

x4

x2

x3

8

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger

SIMD Vectorization Programming model

How to (particle) vectorize existing code (with many branches...) ?

9

Option A (“free lunch”):
put code into a loop and let the compiler do the work

 works in very few cases

9

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger

SIMD Vectorization Programming model

How to (particle) vectorize existing code (with many branches...) ?

9

Option A (“free lunch”):
put code into a loop and let the compiler do the work

 works in very few cases

Option B (“convince the compiler”):
refactor the code to make it “auto-vectorizer” friendly

 might work but strongly compiler dependent

9

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger

SIMD Vectorization Programming model

How to (particle) vectorize existing code (with many branches...) ?

9

Option A (“free lunch”):
put code into a loop and let the compiler do the work

 works in very few cases

Option B (“convince the compiler”):
refactor the code to make it “auto-vectorizer” friendly

 might work but strongly compiler dependent

http://code.compeng.uni-frankfurt.de/projects/vc

Option C (“use SIMD library”):

refactor the code and perform explicit vectorization using
a vectorization library

 always SIMD vectorizes, compiler independent
 excellent experience with the Vc library
 other libraries exist: VectorType (Agner Fog), Boost::SIMD, ...

// hello world example with Vc-SIMD types
Vc::Vector<double> a, b, c;
c=a+b;

9

http://code.compeng.uni-frankfurt.de/projects/vc
http://code.compeng.uni-frankfurt.de/projects/vc

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

“Option A: Free lunch vectorization”

bool contains(const double * point){
 for(unsigned int dir=0; dir < 3; ++dir){

if(fabs (point[dir]-origin[dir]) > boxsize[dir])
return false;

 }
 return true;
}

starting point: some existing code (here easy example)

void contains_v(const double * point, bool * isin, int np) {
 for(unsigned int k=0; k < np; ++k) {
 isin[k]=contains(&point[3*k]);
}}

provide vector-interface, call basic/elemental function ... and
hope that compiler autovectorizes ...

x1

x2

x3

x4

x5

no auto-

vecto
riz

atio
n*

10

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

void contains_v_autovec(const P & points, bool * isin, int np){
 for (int k=0; k < np; ++k)
 {
 bool resultx=(fabs (point.coord[0][k]-origin[0]) > boxsize[0]);
 bool resulty=(fabs (point.coord[1][k]-origin[1]) > boxsize[1]);
 bool resultz=(fabs (point.coord[2][k]-origin[2]) > boxsize[2]);
 isin[k]=resultx & resulty & resultz;
}}

Option B: convince the compiler

this is only version that autovectorizes uncondionally with all
compilers tested (icc 13, gcc 4.7/4.8)

massage/refactor original code to make the compiler autovectorize

copy scalar code to new function ("manual inline")

AOS - SOA conversion of data layout

early - return removal

manual loop unrolling

uncondionally: no pragmas or further platform/compiler dependent
hints

11

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

Option C: Use vector library/classes

void contains_v_Vc(const P & points, bool * isin, int np)
{
 for(int k=0; k < np; k+=Vc::double_v::Size)
 {
 Vc::double_m inside;
 inside = (abs (Vc::double_v(point.coord[0][k])-origin[0]) < boxsize[0]);
 inside&= (abs (Vc::double_v(point.coord[1][k])-origin[1]) < boxsize[1]);
 inside&= (abs (Vc::double_v(point.coord[2][k])-origin[2]) < boxsize[2]);
 // write mask as boolean result
 for (int j=0;j<Vc::double_v::Size;++j){
 isin[k+j]=inside[j];
 }
}

almost same code as before using Vc library (see talk yesterday)
always vectorizes; don’t have to convince compiler
excellent performance (automatically uses aligned data)
can mix vector context and scalar context (code)
given that we have to refactor code anyway, this is our implementation
choice

12

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

Status of simple shape/algorithm investigations

provided optimized code to simple shapes (box, tube, cone) for functions
“ DistToInside”, “DistToOutside”, “Safety”, “IsInside/Contains”

here: using the ROOT shapes

For simple shapes the performance gains match our expectations

13

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

Status of simple shape/algorithm investigations

provided optimized code to simple shapes (box, tube, cone) for functions
“ DistToInside”, “DistToOutside”, “Safety”, “IsInside/Contains”

here: using the ROOT shapes

For simple shapes the performance gains match our expectations

comparison of processing times for 1024 particles (AVX instructions), times in microseconds

ROOT/5.34.09 ROOT/5.34.09 (patched) Vc (SIMD) version

0

17.5

35.0

52.5

70.0

Box Cone Tube

2.7
1.7 2.94

DistToInside

13

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

Status of simple shape/algorithm investigations

provided optimized code to simple shapes (box, tube, cone) for functions
“ DistToInside”, “DistToOutside”, “Safety”, “IsInside/Contains”

here: using the ROOT shapes

For simple shapes the performance gains match our expectations

comparison of processing times for 1024 particles (AVX instructions), times in microseconds

ROOT/5.34.09 ROOT/5.34.09 (patched) Vc (SIMD) version

0

17.5

35.0

52.5

70.0

Box Cone Tube

2.7
1.7 2.94

DistToInside

0

12.5

25.0

37.5

50.0

Box Cone Tube

1.75

2.24

1.98

DistToOutside

13

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

Benchmark higher level navigation algorithm

endcap (cone)

plate detectors

beampipe (tube)

tubular shield

implemented a toy detector for a benchmark (“not to easy; not too complex”): 2 tubes, 4
plate detectors, 2 endcaps (cones), 1 tubular mother volume

Logical volume filled with testparticle pool (random
position and random direction) from which we use
a subset N for benchmarks (P repetitions)

14

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

Benchmark Results: Overall Runtime (CHEP13)

time of processing/navigating N particles (P repetitions) using scalar algorithm
(ROOT) versus vector version

some further gain
with AVX

already gain
considerably for small
N

free lunch gain due to
treatment of baskets
alone

excellent speedup for
SSE4 versionVec (AVX)

Vec (SSE4)
Vec (noSIMD)

ROOT seq

number of particles

tra
ck
in
g
tim
e
pe
rp
ar
tic
le
(n
an
os
ec
on
ds
)

100001000100101

750

600

450

300

150

0

Vec (AVX)
Vec (SSE4)

Vec (noSIMD)
ROOT seq

number of particles
in
str
uc
tio
ns
pe
rp
ar
tic
le
(in
th
ou
sa
nd
)

100001000100101

4

3

2

1

0

Figure 3. Results from the benchmark comparing the scalar and sequential algorithm with a
vector-oriented algorithm and various degrees of usage of SIMD instructions (from scalar fallback
to AVX). (a) Comparison of the runtime per particle showing a speedup factor of roughly 3
comparing the original version to the AVX code. (b) Comparison of actual instructions executed
per particle.

Table 1. Dynamic instruction count statistics for instructions executed in the actual algorithm
of Figure 1. Shown are what fractions ot the total instruction number are taken by simple
memory moves (MOV), call instructions (CALL), SIMD instructions (ALL SIMD) as well as
arithmic SIMD instructions (ARITHM SIMD). These numbers are obtained for 16 particles
and a comparison is done between the four algorithmic versions mentioned in the text. Some
absolute numbers are given in [] brackets (with an arbitrary but consistent scale).

Instruction (type) ROOT seq VEC(noSIMD) VEC(SSE4) VEC(AVX)

ALL [17554373] [10608655] [9230632] [5024520]
MOV 0.296 [5211457] 0.116 [1227198] 0.132 [1217347] 0.163 [819813]
CALL 0.036 [634933] 0.0023 [24601] 0.0026 [24601] 0.0048 [24601]
ALL SIMD 0.043 0.188 0.641 0.57
ARITHM SIMD 0.023 0.039 0.289 0.30

instruction sets SSE4 and AVX) then give the actual gains from microparallelism.6 We can track
the origin of the gains somewhat in analyzing the dynamic instruction mix actually executed
in the benchmark. Some important numbers obtained from this analysis are summarized in
Table 1. Essentially, it can be seen that going from a scalar to vector interface allows to reduce
the number of function call instructions accompanied by a massive reduction in simple memory
moves (such as to save registers on the stack). Further, when introducing SIMD optimisations
with Vc, the overall number of instructions further shrinks and the CPU vector unit is used
to a much higher degree. Using the hardware performance counters, we have also confirmed
that the number of instruction cache misses is considerable reduced due to better code locality
of using the vectorised interfaces. We expect this e↵ect to become even more important with
more complex algorithms. It should be noted that the current numbers are a first optimistic
results. As such they define a new baseline for possible next iterations of optimisations, which
6 We should mention that these number may be influenced by other factors that were optimized in the porting
process; for instance: removal of check whether to calculate safety within some functions.

CHEP13 paper: http://arxiv.org/pdf/1312.0816.pdf

15

http://arxiv.org/pdf/1312.0816.pdf
http://arxiv.org/pdf/1312.0816.pdf

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

Benchmark Results: Overall Runtime (CHEP13)

total speedup of 3.1

time of processing/navigating N particles (P repetitions) using scalar algorithm
(ROOT) versus vector version

some further gain
with AVX

already gain
considerably for small
N

free lunch gain due to
treatment of baskets
alone

excellent speedup for
SSE4 versionVec (AVX)

Vec (SSE4)
Vec (noSIMD)

ROOT seq

number of particles

tra
ck
in
g
tim
e
pe
rp
ar
tic
le
(n
an
os
ec
on
ds
)

100001000100101

750

600

450

300

150

0

Vec (AVX)
Vec (SSE4)

Vec (noSIMD)
ROOT seq

number of particles
in
str
uc
tio
ns
pe
rp
ar
tic
le
(in
th
ou
sa
nd
)

100001000100101

4

3

2

1

0

Figure 3. Results from the benchmark comparing the scalar and sequential algorithm with a
vector-oriented algorithm and various degrees of usage of SIMD instructions (from scalar fallback
to AVX). (a) Comparison of the runtime per particle showing a speedup factor of roughly 3
comparing the original version to the AVX code. (b) Comparison of actual instructions executed
per particle.

Table 1. Dynamic instruction count statistics for instructions executed in the actual algorithm
of Figure 1. Shown are what fractions ot the total instruction number are taken by simple
memory moves (MOV), call instructions (CALL), SIMD instructions (ALL SIMD) as well as
arithmic SIMD instructions (ARITHM SIMD). These numbers are obtained for 16 particles
and a comparison is done between the four algorithmic versions mentioned in the text. Some
absolute numbers are given in [] brackets (with an arbitrary but consistent scale).

Instruction (type) ROOT seq VEC(noSIMD) VEC(SSE4) VEC(AVX)

ALL [17554373] [10608655] [9230632] [5024520]
MOV 0.296 [5211457] 0.116 [1227198] 0.132 [1217347] 0.163 [819813]
CALL 0.036 [634933] 0.0023 [24601] 0.0026 [24601] 0.0048 [24601]
ALL SIMD 0.043 0.188 0.641 0.57
ARITHM SIMD 0.023 0.039 0.289 0.30

instruction sets SSE4 and AVX) then give the actual gains from microparallelism.6 We can track
the origin of the gains somewhat in analyzing the dynamic instruction mix actually executed
in the benchmark. Some important numbers obtained from this analysis are summarized in
Table 1. Essentially, it can be seen that going from a scalar to vector interface allows to reduce
the number of function call instructions accompanied by a massive reduction in simple memory
moves (such as to save registers on the stack). Further, when introducing SIMD optimisations
with Vc, the overall number of instructions further shrinks and the CPU vector unit is used
to a much higher degree. Using the hardware performance counters, we have also confirmed
that the number of instruction cache misses is considerable reduced due to better code locality
of using the vectorised interfaces. We expect this e↵ect to become even more important with
more complex algorithms. It should be noted that the current numbers are a first optimistic
results. As such they define a new baseline for possible next iterations of optimisations, which
6 We should mention that these number may be influenced by other factors that were optimized in the porting
process; for instance: removal of check whether to calculate safety within some functions.

CHEP13 paper: http://arxiv.org/pdf/1312.0816.pdf

15

http://arxiv.org/pdf/1312.0816.pdf
http://arxiv.org/pdf/1312.0816.pdf

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

Further Metrics: Executed Instructions

investigate origin of speedup: study hardware performance counters; here
number of instructions executed

gain mainly due to
less instructions
(for the same work)

Vec (AVX)
Vec (SSE4)

Vec (noSIMD)
ROOT seq

number of particles

tra
ck
in
g
tim
e
pe
rp
ar
tic
le
(n
an
os
ec
on
ds
)

100001000100101

750

600

450

300

150

0

Vec (AVX)
Vec (SSE4)

Vec (noSIMD)
ROOT seq

number of particles

in
str
uc
tio
ns
pe
rp
ar
tic
le
(in
th
ou
sa
nd
)

100001000100101

4

3

2

1

0

Figure 3. Results from the benchmark comparing the scalar and sequential algorithm with a
vector-oriented algorithm and various degrees of usage of SIMD instructions (from scalar fallback
to AVX). (a) Comparison of the runtime per particle showing a speedup factor of roughly 3
comparing the original version to the AVX code. (b) Comparison of actual instructions executed
per particle.

Table 1. Dynamic instruction count statistics for instructions executed in the actual algorithm
of Figure 1. Shown are what fractions ot the total instruction number are taken by simple
memory moves (MOV), call instructions (CALL), SIMD instructions (ALL SIMD) as well as
arithmic SIMD instructions (ARITHM SIMD). These numbers are obtained for 16 particles
and a comparison is done between the four algorithmic versions mentioned in the text. Some
absolute numbers are given in [] brackets (with an arbitrary but consistent scale).

Instruction (type) ROOT seq VEC(noSIMD) VEC(SSE4) VEC(AVX)

ALL [17554373] [10608655] [9230632] [5024520]
MOV 0.296 [5211457] 0.116 [1227198] 0.132 [1217347] 0.163 [819813]
CALL 0.036 [634933] 0.0023 [24601] 0.0026 [24601] 0.0048 [24601]
ALL SIMD 0.043 0.188 0.641 0.57
ARITHM SIMD 0.023 0.039 0.289 0.30

instruction sets SSE4 and AVX) then give the actual gains from microparallelism.6 We can track
the origin of the gains somewhat in analyzing the dynamic instruction mix actually executed
in the benchmark. Some important numbers obtained from this analysis are summarized in
Table 1. Essentially, it can be seen that going from a scalar to vector interface allows to reduce
the number of function call instructions accompanied by a massive reduction in simple memory
moves (such as to save registers on the stack). Further, when introducing SIMD optimisations
with Vc, the overall number of instructions further shrinks and the CPU vector unit is used
to a much higher degree. Using the hardware performance counters, we have also confirmed
that the number of instruction cache misses is considerable reduced due to better code locality
of using the vectorised interfaces. We expect this e↵ect to become even more important with
more complex algorithms. It should be noted that the current numbers are a first optimistic
results. As such they define a new baseline for possible next iterations of optimisations, which
6 We should mention that these number may be influenced by other factors that were optimized in the porting
process; for instance: removal of check whether to calculate safety within some functions.

16

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

Further Metrics: Executed Instructions

investigate origin of speedup: study hardware performance counters; here
number of instructions executed

gain mainly due to
less instructions
(for the same work)

 comparison for N=1024 particles
(AVX versus ROOT seq)

detailed analysis (binary
instrumentation) can
give statistics, e.g.:

ROOT Vec

MOV 30% 15%

CALL 4% 0.4%

V..PD
(SIMD
instr)

5% 55%

Vec (AVX)
Vec (SSE4)

Vec (noSIMD)
ROOT seq

number of particles

tra
ck
in
g
tim
e
pe
rp
ar
tic
le
(n
an
os
ec
on
ds
)

100001000100101

750

600

450

300

150

0

Vec (AVX)
Vec (SSE4)

Vec (noSIMD)
ROOT seq

number of particles

in
str
uc
tio
ns
pe
rp
ar
tic
le
(in
th
ou
sa
nd
)

100001000100101

4

3

2

1

0

Figure 3. Results from the benchmark comparing the scalar and sequential algorithm with a
vector-oriented algorithm and various degrees of usage of SIMD instructions (from scalar fallback
to AVX). (a) Comparison of the runtime per particle showing a speedup factor of roughly 3
comparing the original version to the AVX code. (b) Comparison of actual instructions executed
per particle.

Table 1. Dynamic instruction count statistics for instructions executed in the actual algorithm
of Figure 1. Shown are what fractions ot the total instruction number are taken by simple
memory moves (MOV), call instructions (CALL), SIMD instructions (ALL SIMD) as well as
arithmic SIMD instructions (ARITHM SIMD). These numbers are obtained for 16 particles
and a comparison is done between the four algorithmic versions mentioned in the text. Some
absolute numbers are given in [] brackets (with an arbitrary but consistent scale).

Instruction (type) ROOT seq VEC(noSIMD) VEC(SSE4) VEC(AVX)

ALL [17554373] [10608655] [9230632] [5024520]
MOV 0.296 [5211457] 0.116 [1227198] 0.132 [1217347] 0.163 [819813]
CALL 0.036 [634933] 0.0023 [24601] 0.0026 [24601] 0.0048 [24601]
ALL SIMD 0.043 0.188 0.641 0.57
ARITHM SIMD 0.023 0.039 0.289 0.30

instruction sets SSE4 and AVX) then give the actual gains from microparallelism.6 We can track
the origin of the gains somewhat in analyzing the dynamic instruction mix actually executed
in the benchmark. Some important numbers obtained from this analysis are summarized in
Table 1. Essentially, it can be seen that going from a scalar to vector interface allows to reduce
the number of function call instructions accompanied by a massive reduction in simple memory
moves (such as to save registers on the stack). Further, when introducing SIMD optimisations
with Vc, the overall number of instructions further shrinks and the CPU vector unit is used
to a much higher degree. Using the hardware performance counters, we have also confirmed
that the number of instruction cache misses is considerable reduced due to better code locality
of using the vectorised interfaces. We expect this e↵ect to become even more important with
more complex algorithms. It should be noted that the current numbers are a first optimistic
results. As such they define a new baseline for possible next iterations of optimisations, which
6 We should mention that these number may be influenced by other factors that were optimized in the porting
process; for instance: removal of check whether to calculate safety within some functions.

16

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger

Current performance status (April 14)

since CHEP13, have improved the algorithms further

17

distFromInside
mothervolume

pick next
daughter volume

transform
coordinates to
daughter frame

distToOutside
daughtervol

update step +
boundary

vector flow

SIMD

SIMD

SIMD

SIMD

17

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger

Current performance status (April 14)

since CHEP13, have improved the algorithms further

17

distFromInside
mothervolume

pick next
daughter volume

transform
coordinates to
daughter frame

distToOutside
daughtervol

update step +
boundary

vector flow

SIMD

SIMD

SIMD

SIMD

16 particles 1024 particles SIMD MAX

Intel
IvyBridge

(AVX)
~2.8x ~4.0x 4x

Intel Haswell
(AVX2) ~3.0x ~5.0x 4x

Intel Xeon-
Phi

(AVX512)
~4.1x ~4.8x 8x

Xeon-Phi and Haswell benchmarks by CERN Openlab (Georgios Bitzes)
gcc 4.8; -O3 -funroll-loops -mavx; no FMA

good overall performance gains for navigation algorithm (in toy
detector with 4 boxes, 3 tubes, 2 cones) - compared to ROOT/5.34.17

17

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger

Improving vectorization: C++ template techniques

a lot of branches in geometry code just distinguish between “static” properties of
class instances

general “tube solid” class distinguishes at runtime between “FullTube”, “Hollow Tube” ...

18

FullTubePhiFullTube HollowTube

“branches are the enemy of vectorization...”

18

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger

Improving vectorization: C++ template techniques

a lot of branches in geometry code just distinguish between “static” properties of
class instances

general “tube solid” class distinguishes at runtime between “FullTube”, “Hollow Tube” ...

18

FullTubePhiFullTube HollowTube

“branches are the enemy of vectorization...”

AbstractTube

Safety
DistanceToIn

SpecializedTube
 TubeType

we employ template techniques to:

evaluate and reduce “static” branches at compile time

to generate binary code specialized to concrete solid instances

➡ makes vectorization more efficient

➡ allows better compiler optimizations in scalar code

18

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger

Beyond the prototype: Towards a
general high performance library for

detector geometry

19

Georgios Bitzes (CERN Openlab)
Johannes De Fine Licht (CERN technical student)
Guilherme Lima (Fermilab)

“vectorization everywhere”
“architecture abstraction”

“reusable generic components”

with contributions from

19

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

Where do we go from here?

It is now time to put these experiences/results into
practice and provide a complete vectorized geometry
library for simulation packages

20

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

Challenges from the software development
perspective

Lessons learned in small prototype
in prototype, had to refactor or rewrite code completely to achieve
vectorization

vector code exists in addition to scalar code

Should we follow same approach to port large existing code base in
Geant4/ROOT/USolids geometry library?

maintenance nightmare

validation nightmare

Clearly the answer is no: It would be nice to have code which can be
used in both scalar and vector context (to large extentd)

21

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

Challenges continued

How can we reuse the same code on the CPU + GPU?
the geometry library should be usable on different architectures

A vector friendly CPU functions is a good starting point for a kernel on
the GPU; GPU could just reuse vector kernel in a different context

How can we benefit from future advances in compiler
technology (autovectorization)?

expressing algorithms with Vc often makes them suitable for
autovectorization

we would like to stay flexible and possibly benefit from advances in this
area

How can we make code platform independent + vector
implementation independent?

How can we play with other vector library implementations?

We’d like to use the best option available on a case by case basis (Vc,
Boost::Simd, VectorClass (Agner Fog) as a function of performance and
platform

22

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

“Generic programming”

Generic programming with C++ templates provides the solution
to all those problems

has been around for a long time and is among the few high-performance
techniques of C++

not much used in HEP codes (at least not in simulation)

here, a very good option (inside a library implementation, almost not
much user code) and probably almost without alternative

same approach as Vc (for instance) at a slightly higher level

works very well with NVidia CUDA

not (really) supported by pure OpenCL ...

Generic programming

23

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger

template<typename	 BaseDType,	 typename	 BaseIType>
void	 ConstBzFieldHelixStepper::DoStep(
	 	 	 	 	 	 	 	 	 	 	 	 BaseDType	 const	 &	 x0,	 BaseDType	 const	 &	 y0,	 BaseDType	 const	 &	 z0,
	 	 	 	 	 	 	 	 	 	 	 	 BaseDType	 const	 &	 dx0,	 BaseDType	 const	 &	 dy0,	 BaseDType	 const	 &	 dz0,
	 	 	 	 	 	 	 	 	 	 	 	 BaseIType	 const	 &	 charge,	 BaseDType	 const	 &	 momentum,	 BaseDType	 const	 &	 step,
	 	 	 	 	 	 	 	 	 	 	 	 BaseDType	 &	 x,	 BaseDType	 &	 y,	 BaseDType	 &	 z,
	 	 	 	 	 	 	 	 	 	 	 	 BaseDType	 &	 dx,	 BaseDType	 &	 dy,	 BaseDType	 &	 dz
)	 const
	 	 {
	 	 	 	 	 	 const	 double	 kB2C_local	 =	 -‐0.299792458e-‐3;
	 	 	 	 	 	 BaseDType	 dt	 =	 sqrt((dx0*dx0)	 +	 (dy0*dy0));
	 	 	 	 	 	 BaseDType	 invnorm=1./dt;
	 	 	 	 	 	 BaseDType	 R	 =	 momentum*dt/((kB2C_local*BaseDType(charge))*(fBz));
	 	 	 	 	 	 BaseDType	 cosa=	 dx0*invnorm;
	 	 	 	 	 	 BaseDType	 sina=	 dy0*invnorm;
	 	 	 	 	 	 BaseDType	 helixgradient	 =	 dz0*invnorm*abs(R);
	
//	 some	 code	 omitted	 ...	
	
	 	 	 	 	 	 	 x	 =	 x0	 +	 R*(-‐sina	 +	 cosphi*sina	 +	 sinphi*cosa));
	 	 	 	 	 	 	 y	 =	 y0	 +	 R*(cosa	 	 +	 sina*sinphi	 -‐	 cosphi*cosa));
	 	 	 	 	 	 	 z	 =	 z0	 +	 helixgradient*phi;
	
	 	 	 	 	 	 	 dx	 =	 dx0	 *	 cosphi	 -‐	 sinphi	 *	 dy0;
	 	 	 	 	 	 	 dy	 =	 dx0	 *	 sinphi	 +	 cosphi	 *	 dy0;
	 	 	 	 	 	 	 dz	 =	 dz0;
	 	 }

A simple example for the generic approach

24

Example code for propagation of particles in a constant magnetic field ...

24

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger

template<typename	 BaseDType,	 typename	 BaseIType>
void	 ConstBzFieldHelixStepper::DoStep(
	 	 	 	 	 	 	 	 	 	 	 	 BaseDType	 const	 &	 x0,	 BaseDType	 const	 &	 y0,	 BaseDType	 const	 &	 z0,
	 	 	 	 	 	 	 	 	 	 	 	 BaseDType	 const	 &	 dx0,	 BaseDType	 const	 &	 dy0,	 BaseDType	 const	 &	 dz0,
	 	 	 	 	 	 	 	 	 	 	 	 BaseIType	 const	 &	 charge,	 BaseDType	 const	 &	 momentum,	 BaseDType	 const	 &	 step,
	 	 	 	 	 	 	 	 	 	 	 	 BaseDType	 &	 x,	 BaseDType	 &	 y,	 BaseDType	 &	 z,
	 	 	 	 	 	 	 	 	 	 	 	 BaseDType	 &	 dx,	 BaseDType	 &	 dy,	 BaseDType	 &	 dz
)	 const
	 	 {
	 	 	 	 	 	 const	 double	 kB2C_local	 =	 -‐0.299792458e-‐3;
	 	 	 	 	 	 BaseDType	 dt	 =	 sqrt((dx0*dx0)	 +	 (dy0*dy0));
	 	 	 	 	 	 BaseDType	 invnorm=1./dt;
	 	 	 	 	 	 BaseDType	 R	 =	 momentum*dt/((kB2C_local*BaseDType(charge))*(fBz));
	 	 	 	 	 	 BaseDType	 cosa=	 dx0*invnorm;
	 	 	 	 	 	 BaseDType	 sina=	 dy0*invnorm;
	 	 	 	 	 	 BaseDType	 helixgradient	 =	 dz0*invnorm*abs(R);
	
//	 some	 code	 omitted	 ...	
	
	 	 	 	 	 	 	 x	 =	 x0	 +	 R*(-‐sina	 +	 cosphi*sina	 +	 sinphi*cosa));
	 	 	 	 	 	 	 y	 =	 y0	 +	 R*(cosa	 	 +	 sina*sinphi	 -‐	 cosphi*cosa));
	 	 	 	 	 	 	 z	 =	 z0	 +	 helixgradient*phi;
	
	 	 	 	 	 	 	 dx	 =	 dx0	 *	 cosphi	 -‐	 sinphi	 *	 dy0;
	 	 	 	 	 	 	 dy	 =	 dx0	 *	 sinphi	 +	 cosphi	 *	 dy0;
	 	 	 	 	 	 	 dz	 =	 dz0;
	 	 }

A simple example for the generic approach

24

Example code for propagation of particles in a constant magnetic field ...

actual code read
(almost) as usual

abstract types

24

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger

template<typename	 BaseDType,	 typename	 BaseIType>
void	 ConstBzFieldHelixStepper::DoStep(
	 	 	 	 	 	 	 	 	 	 	 	 BaseDType	 const	 &	 x0,	 BaseDType	 const	 &	 y0,	 BaseDType	 const	 &	 z0,
	 	 	 	 	 	 	 	 	 	 	 	 BaseDType	 const	 &	 dx0,	 BaseDType	 const	 &	 dy0,	 BaseDType	 const	 &	 dz0,
	 	 	 	 	 	 	 	 	 	 	 	 BaseIType	 const	 &	 charge,	 BaseDType	 const	 &	 momentum,	 BaseDType	 const	 &	 step,
	 	 	 	 	 	 	 	 	 	 	 	 BaseDType	 &	 x,	 BaseDType	 &	 y,	 BaseDType	 &	 z,
	 	 	 	 	 	 	 	 	 	 	 	 BaseDType	 &	 dx,	 BaseDType	 &	 dy,	 BaseDType	 &	 dz
)	 const
	 	 {
	 	 	 	 	 	 const	 double	 kB2C_local	 =	 -‐0.299792458e-‐3;
	 	 	 	 	 	 BaseDType	 dt	 =	 sqrt((dx0*dx0)	 +	 (dy0*dy0));
	 	 	 	 	 	 BaseDType	 invnorm=1./dt;
	 	 	 	 	 	 BaseDType	 R	 =	 momentum*dt/((kB2C_local*BaseDType(charge))*(fBz));
	 	 	 	 	 	 BaseDType	 cosa=	 dx0*invnorm;
	 	 	 	 	 	 BaseDType	 sina=	 dy0*invnorm;
	 	 	 	 	 	 BaseDType	 helixgradient	 =	 dz0*invnorm*abs(R);
	
//	 some	 code	 omitted	 ...	
	
	 	 	 	 	 	 	 x	 =	 x0	 +	 R*(-‐sina	 +	 cosphi*sina	 +	 sinphi*cosa));
	 	 	 	 	 	 	 y	 =	 y0	 +	 R*(cosa	 	 +	 sina*sinphi	 -‐	 cosphi*cosa));
	 	 	 	 	 	 	 z	 =	 z0	 +	 helixgradient*phi;
	
	 	 	 	 	 	 	 dx	 =	 dx0	 *	 cosphi	 -‐	 sinphi	 *	 dy0;
	 	 	 	 	 	 	 dy	 =	 dx0	 *	 sinphi	 +	 cosphi	 *	 dy0;
	 	 	 	 	 	 	 dz	 =	 dz0;
	 	 }

A simple example for the generic approach

24

Demonstrated use of
this code in:
a) scalar sense
b) vectorization with Vc
c) autovectorization with
Intel compiler
d) as the basis for a CUDA
kernel

excellent for maintenance

Example code for propagation of particles in a constant magnetic field ...

actual code read
(almost) as usual

abstract types

24

Sandro Wenzel 5th International Workshop on Future Challenges in Tracking and Trigger

“VecGeom”

A project “VecGeom” was started to put those ideas into practice for
the geometry

merged with AIDA Unified Solids effort

https://github.com/sawenzel/VecGeom.git

current implementation status:
library abstraction layer to provide some abstractions on concepts that differ
in various backends (masks, masked assignments, math functions, loopers)

generic templated implementations for few shapes (box, para, tube, cone)

geometry hierarchies on CPU and GPU

can be basis for GPU + Geant-V simulation prototypes (already used)

much reduced actual code base compared to previous situation with different
versions for scalar and vector code

25

Performance

optimized many
particle treatment

template techniques

template class
specialization / code
generation

SIMD

algo + class
review

Vc library

Goals

Approach

Implementation

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger

The prototype: summary

26

Performance

optimized many
particle treatment

template techniques

template class
specialization / code
generation

SIMD

algo + class
review

Vc library

Goals

Approach

Implementation

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger

VecGeom : overview

optimized 1-
particle functions

Abstraction Code reuse

Cilk Plus autovectorization Boost::SIMD

optimized base
types / containers

SIMD abstraction

CPU/GPU abstraction

reusable components

same code base for
CPU/GPU where
appropriate

generic programming

?

27

Sandro Wenzel, CERN-PH-SFT 5th International Workshop on Future Challenges in Tracking and Trigger

Summary

28

Part II:

promoted use of generic programming in HEP codes; working
towards general high-performance geometry library that is

 flexible,

 portable,

 performant,

 maintainable due to reduced code size

Part I:

promising SIMD results in geometry demonstrator

promoted use of vectorization in simulation codes

28

