CERNopenlab

Intel's Knights Landing – what's old, what's new?

5th Intl-Workshop for Future Challenges in Tracking and Trigger Concepts

Andrzej Nowak, CERN openlab CTO office

0

old die shot

Andrzej Nowak - Intel's Knights Landing – what's old, what's new?

High level view

KNC 2012	KNL 2015+
Core	
61 cores	72 cores
P54C (Pentium Pro)	Silvermont (Atom)
1-1.2 GHz	?
Memory	
16 GB GDDR	16 GB eDRAM (3D)
0 GB DDR3	Up to 384 GB DDR4
Package	
22nm	14nm
1 TF DP	3 TF DP
PCIe gen2	PCIe gen3, Socket

Andrzej Nowak - Intel's Knights Landing – what's old, what's new?

Core progression

- Move from a beefed-up P54C core to a Silvermont (modern Atom)
 - Out of order!
 - Still 4 threads/core
 - 1 MB L2 shared across two cores no change in cache size
- Mesh fabric interconnect rather than ring bus
- AVX-512 (3.1) implemented convergence with Xeon
- The promise: 3-4x more GF/Watt than current supercomputers. Will it hold?

Programmability (1)

- Bootability implies wide-spread OS support
- Fully native applications made easy (i.e. normal)
- Kernel patches already inbound
- AVX 512 convergence will improve the quality of software tools and compilers
- Less maintenance, more performance
- No guarantee of binary compatibility so far
- Parallelization, vectorization
- No escape

Programmability (2)

- A new layer of memory
- High-BW eDRAM on chip, DDR further away
- Can we afford to remain agnostic?

"Crazy" stuff

- >100 PF system target
- 3D memory on board, 500GB/s
 - Socket option (single)
 - Integrated next-gen 100Gbit interconnect: Storm Lake
 - 200W TDP only?
 - Next-gen Cray: KNL
 - \$70m

Ċ,

What does this mean for us?

- No fundamental shift
- Still need to parallelize, vectorize
- Better software support
 - Better chance to get good performance with GNU and open source stacks
 - Faster cores
 - Always better
- Not many more cores
- Reduces scaling issues
- Socket option and bootability
- Easier management, finally lots of memory Integrated interconnect
- On paper: fantastic device for data taking and HPC

Thank you

Andrzej.Nowak@cern.ch