
Vectorization and
tools
Fifth International Workshop for
Future Challenges in Tracking
and Trigger Concepts

Georgios Bitzes, CERN openlab
Andrzej Nowak, CERN openlab

› 13 May 2014

The ever-increasing vector width

› 1996: MMX
› 1999: SSE

 Instructions only for four 32-bit single-precision floating point
› 2001: SSE2
› 2004: SSE3
› 2006: SSE4
› 2011: AVX, starting with “Sandy Bridge” and a vector

width of 256 bits
› 2011: Xeon Phi with custom vector instructions

operating on 512-bit vectors
› 2013: AVX2 with Fused Multiplication and Addition

instructions (FMA)
› Upcoming: AVX-512 on Intel “Skylake”

microarchitecture and an increased vector width of 512
bits on x86-64

13/05/2014 Georgios Bitzes – CERN openlab 2

Some downsides..

› Increases in vector size not always
correspond to equivalent increases in
efficiency
 Not all operations parallelized in hardware

̵ AVX division has around twice the latency
as an SSE division…

› This increase cannot go on forever..
 Likely to have a stop at 1024 bits – memory

bandwidth becoming a limiting factor
› Vectorization attempted in HEP during

the 80s, did not continue

13/05/2014 Georgios Bitzes – CERN openlab 3

How to use in our software?

› Today, an abundance of SIMD instructions
in all commodity hardware

› Still, relatively low usage despite large
potential benefits

› Retrofitting SIMD in existing software
difficult or impossible to do – often
requires changes in fundamental data
structures

› Many subtle things to take into account:
data layout, alignment, dependencies
among loop iterations, pointer aliasing…

13/05/2014 Georgios Bitzes – CERN openlab 4

Candidates for vectorization

› Not all problems suitable for
vectorization, but a lot are

› Example: No way to vectorize this exact
loop

13/05/2014 Georgios Bitzes – CERN openlab 5

fib[0] = 0;
fib[1] = 1;
for(i = 2; i < N; i++) {
 fib[i] = fib[i-1] + fib[i-2];
}

Dependency among loop iterations

Autovectorization

› “Well, it’s the compiler’s job to emit the correct
instructions, why should we care?”

› Autovectorization can do the right thing in many
cases, but not all – often needs help with
directives

› Will it vectorize?

13/05/2014 Georgios Bitzes – CERN openlab 6

int add(float *a, float *b, float *c, int N)
{
 int i;
 for(i = 0; i < N; i++) {
 c[i] = a[i] + b[i]
 }
}

taken from slides of Andrzej Nowak

Pointer aliasing

› Pointer aliasing: What if c-1 and b actually
point to the same location in memory?
 Autovectorization: The compiler could place values

from a and b in a vector register.. Calculating c[0],
c[1], c[2], c[3] in a single instruction.

 But the value of c[1] depends on b[1], which is
actually c[0]…

 Hidden dependency among loop iterations!

› A compiler has to be conservative and
assume this is happening

13/05/2014 Georgios Bitzes – CERN openlab 7

Pointer aliasing (2)

› C99: restrict keyword
 A promise to the compiler that memory accesses

through a pointer will not alias memory accesses
from any other pointer

 Not in C++ standard but compiler specific
extensions exist
̵ __restrict__ in GCC

 Compiler is then free to apply further optimizations
that would be unsafe under the assumption of
pointer aliasing

 If there actually is aliasing when we promise
there’s not.. undefined behavior
̵ Never lie to the compiler!

13/05/2014 Georgios Bitzes – CERN openlab 8

Alignment

› Alignment
 Two categories of load/store vector instructions

– aligned and unaligned
 An unaligned instruction can be many times

slower than its aligned equivalent – especially
if it spans over two cache lines..

 If striving for performance, we need to use
aligned data structures AND make sure the
compiler knows they’re aligned

13/05/2014 Georgios Bitzes – CERN openlab 9

Alignment (2)

› Many options
› Aligning on the stack
 New C++11 feature: alignas specifier with

which you can declare the (minimum) desired
alignment

 Example:
̵ alignas(32) int array[N];

 Guarantees that array % 32 == 0
 Can also be used to align data member inside

an object

13/05/2014 Georgios Bitzes – CERN openlab 10

Alignment (3)

 Other compiler-specific extensions for the same

purpose: __declspec(align(32)) and
__attribute__((aligned(32)))

› Aligning on the heap
 Many malloc functions that take the alignment as

an argument: _mm_malloc, _aligned_malloc..
 std::align: Over-allocate – then pass a pointer and

a size, will truncate and give an aligned pointer
inside that container

13/05/2014 Georgios Bitzes – CERN openlab 11

class A {
 public:
 int N;
 alignas(32) int array[..];
}

Alignment (4)

 After allocating the raw memory, possible to
create objects on it with placement new

 Or override operators new and delete of the
target object:

13/05/2014 Georgios Bitzes – CERN openlab 12

void *ptr = _mm_alloc(size, alignment);
MyAlignedObject *obj = new (ptr) MyAlignedObject();

 void * operator new(std::size_t sz) {
 void *aligned_buffer=_mm_malloc(sizeof(*this), 32);
 return ::operator new(sz, aligned_buffer);
}
 void operator delete(void * ptr) {
 _mm_free(ptr);
}

Code snippet
courtesy of
Sandro Wenzel

Alignment (5)

› Still need to tell the to-be-vectorized code
that the data structures are aligned!
 Just declaring them as aligned during

allocation/construction is not enough..
 If the data structures are defined in a different

compilation unit than the one we hope to auto-
vectorize, the compiler cannot know they’re aligned
̵ An aligned instruction operating on unaligned

data will crash our program.. again, the
compiler has to be conservative

 __assume_aligned(ptr, 32) will do the trick
̵ (or __builtin_assume_aligned …)

13/05/2014 Georgios Bitzes – CERN openlab 13

Alignment (6)

› How much alignment should there be?
 Equal to the size of the vector registers
 16 bytes on 128-bit SSE
 32 bytes on 256-bit AVX / AVX2
 64 bytes on 512-bit Xeon Phi / AVX-512

› Easy to get wrong – if you’re
segfaulting, this is the first thing to
check
 Never hardcode the alignment! Use a #define

13/05/2014 Georgios Bitzes – CERN openlab 14

A better attempt at autovectorization

13/05/2014 Georgios Bitzes – CERN openlab 15

int add(float *a, float *b, float *restrict c, int N) {
 __builtin_assume_aligned(a, 32);
 __builtin_assume_aligned(b, 32);
 __builtin_assume_aligned(c, 32);
 int i;
 for(i = 0; i < N; i++) {
 c[i] = a[i] + b[i]
 }
}

Array size

› If size of the array not multiple of vector
size, there are leftover elements to be
processed sequentially
 Example: N == 10, vector size of 8.. Two more

elements to process sequentially
› If we know array size is a multiple of

the vector size, we can tell the
compiler:
 __assume(N%8==0); (ICC only)
 Now compiler doesn’t need to generate code

to handle leftover elements

13/05/2014 Georgios Bitzes – CERN openlab 16

Data layout

› What’s going on here?

13/05/2014 Georgios Bitzes – CERN openlab 17

for(i = 0; i < N; i++) {
 a[i].x = k * a[i].x
}

Data layout (2)

› Gather and scatter instructions supported
by the hardware – slower, though
 Processor exchanges memory using entire cache

lines – would need to load/store whole array, even
if not using all
̵ More memory bandwidth, more operations
̵ … and crucially, more cache misses!
̵ If having a cache miss on each access,

vectorization only shortens the time between
cache misses..

 Diminished benefits from vectorization

13/05/2014 Georgios Bitzes – CERN openlab 18

Data layout (3)

› Suggestion: Prefer contiguous memory
layouts
 Array of Structures (AOS) vs Struct of Arrays

(SOA)

13/05/2014 Georgios Bitzes – CERN openlab 19

struct point_t {
 double x, y, z;
} points[4];

struct points_t {
 double x[4], y[4], z[4];
} points;

Branches?

› Can be problematic, but not fatal
 Masks: Essentially an array of booleans, one

value for each element in a vector register
 Instructions that operate only on the elements

whose corresponding bit in the mask is on
 Example: Loop can still vectorize, despite the

branch

13/05/2014 Georgios Bitzes – CERN openlab 20

for(i = 0; i < N; i++) {
 if(a[i] >= 0) a[i] = sqrt(a[i]);
}

Increase in memory traffic

› The faster you process the data, the more
often you need to fetch again
 Example: Without vectorization, a cache line worth of

data might take 200 cycles to process – with
vectorization only 70

› Impact of cache misses more visible
 If your loop generates many cache misses, vectorization

will just shorten the time from one cache miss to another
› Prefer to do as many calculations as possible

on a set of data
 Doing 10-20 operations with some data much better

than doing 2-3 before writing back to memory
̵ c[i] = a[i]*a[i] + b[i]*b[i] + b[i]*a[i] + b[i]/a[i] would likely

benefit more than c[i] = a[i] + b[i]
› Memory bandwidth becoming a limiting factor

13/05/2014 Georgios Bitzes – CERN openlab 21

ICC specific extensions

› #pragma ivdep
 Put before a loop – tells the compiler to ignore

assumed vector dependencies

̵ Example: Vectorization safe only if k >= number

of elements of a that can fit in a vector register

̵ “#pragma ivdep” => If unsure about a
dependency, assume it doesn’t happen

 13/05/2014 Georgios Bitzes – CERN openlab 22

for (int i = 0; i < m; i++)
 a[i] = a[i + k] * c;

#pragma ivdep
for (int i = 0; i < m; i++)
 a[i] = a[i + k] * c;

ICC specific extensions (2)

› #pragma vector
 Extra directives to control vectorization
 Possible arguments:

̵ aligned/unaligned: Use aligned/unaligned
instructions, ignoring what you know about the
alignment of the data structures involved

̵ temporal/nontemporal: Controls use of
streaming stores

̵ always: “Even if you don’t think vectorization will
help performance, do it anyway”

̵ assert: If vectorization not possible, throw
compiler error

13/05/2014 Georgios Bitzes – CERN openlab 23

ICC specific extensions (3)

› #pragma simd
 The nuclear option – enforce vectorization if at all

possible
 Now in GCC 4.9 as part of Cilk+
 Lots of knobs and options.. Too many to describe here

̵ vectorlength: Specify safe length of vector registers
(in number of elements) – useful to specify there’s a
dependency between i-th and i-5-th elements

̵ reduction

13/05/2014 Georgios Bitzes – CERN openlab 24

int x = 0;
#pragma simd reduction(+:x)
for(int i = 0; I < N; i++) {
 x += a[i];
}

Vc library by Matthias Kretz

› Explicit vectorization: Fine-tuned control, ability to directly
manipulate vector registers and elements

› Requires C++11
› No overhead
› Operator overloading for easy to understand and intuitive

code
› Vector types: double_v, float_v, int_v ..

 Size depends on target instruction set .. for AVX, double_v contains 4
elements, 2 for SSE

› Convenience containers to handle alignment and looping for us

› http://code.compeng.uni-frankfurt.de/projects/Vc
› Very good experience with it

13/05/2014 Georgios Bitzes – CERN openlab 25

Vc::Memory<double_v, 100> mem;
...
for(int i = 0; i < mem.vectorsCount(); i++) {
 double_v vec = mem.vector(i);
 ... handle vec ...
}

http://code.compeng.uni-frankfurt.de/projects/Vc
http://code.compeng.uni-frankfurt.de/projects/Vc
http://code.compeng.uni-frankfurt.de/projects/Vc
http://code.compeng.uni-frankfurt.de/projects/Vc
http://code.compeng.uni-frankfurt.de/projects/Vc

Vc library (2)

› What about branches?
 Neat syntax to only operate on specific elements of

the vector

 double_m, int_m, float_m … essentially arrays of
booleans with as many number of elements as
their corresponding double_v, int_v, float_v …

13/05/2014 Georgios Bitzes – CERN openlab 26

double_v a, c;
...
c(a > 0) = a + ...;

only touch those elements for which a > 0
No, not a function call, just C++ magic

Intel Cilk+ extensions

› Not just a library: language extensions
to the C/C++ syntax
 Requires support from the compiler

̵ Starting from ICC 12.0
̵ Added to GCC 4.9
̵ Clang support coming up

› Still need to care about aliasing,
alignment, data layout …
 No escape
 Likely to improve in the future

13/05/2014 Georgios Bitzes – CERN openlab 27

OpenMP 4.0

› An update to the widely supported
standard
 #pragma omp simd

̵ Similar, but not identical to Cilk+ #pragma
simd

̵ Some options
• reduction
• safelen

 Function vectorization
̵ Declares function to be used inside SIMD

loop

13/05/2014 Georgios Bitzes – CERN openlab 29

OpenMP 4.0 (2)

̵ Two versions of the function generated: A
normal and one that takes vectors as
parameters

13/05/2014 Georgios Bitzes – CERN openlab 30

#pragma omp declare simd
float min(float a, float b) {
 return a < b ? a : b;
}

void example() {
 #pragma omp simd
 for(…) {
 c[i] = min(a[i], b[i]);
 }
}

Math libraries

› In addition, many high performance
libraries use vectorization internally
 VDT: glibm replacement – exp, log, sin, cos,

tan, …
̵ Open source
̵ Vectorization provides excellent

performance – 5x speedup compared to
glibm not uncommon

̵ Very accurate
• No error in most cases (double precision)
• 1-2 bits of error in a few cases

13/05/2014 Georgios Bitzes – CERN openlab 31

Slide courtesy of Danilo Piparo (PH-SFT, CERN)

Math libraries (2)

› Intel MKL
 Extensive: Covers many domains

̵ Linear algebra, FFTs, vector math, statistics
…

 New in latest beta: Features and optimizations
specific to small matrices (inlining, batch
processing)

13/05/2014 Georgios Bitzes – CERN openlab 33

Thanks
georgios.bitzes@cern.ch

13/05/2014 Georgios Bitzes – CERN openlab 34

	Vectorization and tools
	The ever-increasing vector width
	Some downsides..
	How to use in our software?
	Candidates for vectorization
	Autovectorization
	Pointer aliasing
	Pointer aliasing (2)
	Alignment
	Alignment (2)
	Alignment (3)
	Alignment (4)
	Alignment (5)
	Alignment (6)
	A better attempt at autovectorization
	Array size
	Data layout
	Data layout (2)
	Data layout (3)
	Branches?
	Increase in memory traffic
	ICC specific extensions
	ICC specific extensions (2)
	ICC specific extensions (3)
	Vc library by Matthias Kretz
	Vc library (2)
	Intel Cilk+ extensions
	Slide Number 28
	OpenMP 4.0
	OpenMP 4.0 (2)
	Math libraries
	Slide Number 32
	Math libraries (2)
	Slide Number 34

