€ FAIR

ALICE

ALFA - a common concurrency
framework for ALICE and FAIR

experiments

Mohammad Al-Turany
GSI-IT/CERN-PH

ALFA: New ALICE-FAIR framework

Motivation for ALFA
ALFA and FairRoot
Transport layer
Serializing message data
Deployment system
Examples

Summary

How it comes?

e FairRoot (2013)
— Concurrency is an issue FA' R
— Online and offline can be joined
* ALICE O’ Project started (2013)
— DAQ, Online and Offline : Together on one

Framework HLICE

Simil nts by

Online System Requirement m
PANDA

Interaction rates of 20 MHz (50 MHz peak)
Event size of 4-10 kB

data rates after front end preprocessing:
80GB/s -300 GB/s
No hardware trigger:

— Autonomous recording frontends
— Event selection in compute nodes

Online System Requirements &8

CBM

At 10 MHz, online data reduction by 1000 is
mandatory (1 TB/s)

Trigger signatures are complex (open charm)
and require partial event reconstruction

No a-priori association of signals to physical
events!

Need extremely fast reconstruction
algorithms!

Online System Requirements %
ALICE Run3: ALICE

* Sample full 50kHz Pb-Pb interaction rate
(current limit at “500Hz, factor 100 increase)

« & ~1.1 TByte/s detector readout but the
ALICE data processing power capacity will not

allow more than a Storage bandwidth of ~20
GByte/s

€

N, Strategy

e Massive data volume reduction

— Data reduction by (partial) online reconstruction
and compression

* Much tighter coupling between online and
offline reconstruction software

.

N

FairRoot

Start testing .
the VMC :j ?;iiec'ded R3B joined :Ecl)::\ (CE;ﬁf;::" SOFIA (Studies SHIP - Search
concept for FairRoot: same BNL) Ol:l Flssmrr for I:IIdden
CBM) with Aladin) Particles
Base package EICRoot
for different
l experiment. ! !
First Release of MPD (NICA) GEM-TPC ENSAR-ROOT
CbmRoot start also using ASYEOS joined .o rated Collection of
FairRoot (ASYEOSRoot) from PANDA modules used by
branch structural nuclear
(FOPIRoot) e exp.

Current status of FairRoot

ALICE and FAIR: Why?

A common framework will be beneficial for the FAIR
experiments since it will be tested with real data and
existing detectors before the start of the FAIR facility.

— E.g.: Concepts for online calibrations and alignment can

be tested in a real environment, similar to that of the
planned FAIR experiments.

e ALICE will benefit from the work already performed by
the FairRoot team concerning already implemented
features (e.g. the continuous read-out, building and
testing system, etc)

11

Who is going to collaborate on ALFA

* ALICE DAQ

ALICE HLT
ALICE Offline
FairRoot

Fair and Non-Fair experiments are welcome
to join

12

ALFA

Common layer for parallel
processing.

Common algorithms for data
processing.

Common treatment of
conditions database.

Common deployment and
monitoring infrastructure.

13

ALFA

Will rely on a data-flow based model (Message

Queu

It will
— Tra

es).
contain
nsport layer (based on: ZeroMQ, NanoMSG)

— Configuration tools
— Management and monitoring tools

Provide unified access to configuration parameters

and ¢

It wil
distri

atabases.

include support for a heterogeneous and
outed computing system.

Incor

oorate common data processing components

14

Correct balance between reliability
and performance

* Multi-process concept with message queues for
data exchange

— Each "Task" is a separate process, which can be also

multithreaded, and the data exchange between the
different tasks is done via messages.

— Different topologies of tasks that can be adapted to
the problem itself, and the hardware capabilities.

FairRoot is undergoing a re-design
process to make it more modular

R3BRoot MPDRoot
AsyEosRoot EICRoot

16

How is it with ALFA and FairRoot?

AliRooté CbmRoot R3BRoot MPDRoot
(O?) :
PandaRoot @ AsyEosRoot FopiRoot EICRoot

ALFA will use ZMQ to connect
different pieces together

BSD sockets API
Bindings for 30+ languages
Lockless and Fast

Automatic re-connection
Multiplexed I/0

.........

t!...,..‘,

18

BUT: nanomsg is under development by the

original author of Zerol\/lQm

Pluggable Transports:

— ZeroMQ has no formal API for adding new transports (Infiniband, WebSeockets, etc).
nanomsg defines such API, which simplifies implementation of new transports.

Zero-Copy:

— Better zero-copy support with RDMA and shared memory, which will improve transfer
rates for larger data for inter-process communication.

Simpler interface:

— simplifies some zeromq concepts and API, for example, it no longer needs Context class.

Numerous other improvements, described here:

FairRoot is independent from the transport library
— Modular/Pluggable/Switchable transport libraries.

19

ALFA has an abstract transport layer

FairMQTransportFactory

\V4

i

FairMQTransportFactoryZMQ

FairMQMessage

AN

i

FairMQMessageZMQ

-fOutput

X

<1

PR E FairMQSocket

-fPayloadOutputs
K

—fProcL

FairMQSamplerTask X-| FairMQSampler

ssorTask

plerTask

Ja
FairMQSocketZMQ

FairMQProcessorTask

JAN

-fContext

N
/\

FairMQProcessor FairMQContextZMQ

‘ FairTestDetectorMQRecoTask \ ’TestDetectorDigiLoader \

How the different processes are going
to communicate with each other?

* Different languages and hardware are
possible how should the data exchange be

done?

e Schema evolution?

21

Protocol buffers

* Google Protocol Buffers support is now
implemented

— Example in Tutorial 3 in FairRoot.

* To use protobuf, run cmake as follows:
— cmake -DUSE_PROTOBUF=1

22

Boost serialization

Code portability - depend only on ANSI C++ facilities.

Code economy - exploit features of C++ such as RTTI, templates, and
multiple inheritance, etc. where appropriate to make code shorter
and simpler to use.

Independent versioning for each class definition. That is, when a

class definition changed, older files can still be imported to the new
version of the class.

Deep pointer save and restore. That is, save and restore of pointers
saves and restores the data pointed to.

http://www.boost.org/doc/libs/1_55_0/libs/serialization/doc/index.html

This is used already by the CBM Online group in Frankfurt and to we need
it to exchange data with them!

23

Protobuf, Boost or Manual

serialization?
* Boost:

— we are generic in the tasks but intrusive in the
data classes (digi, hit, timestamp)

e Manual and Protobuf

— We are generic in thegass but intrusive in the
tasks (need to fill/access payloads from class with
set/get x, vy, z etc).

How to deploy ALFA on a laptop, few
PCs or a cluster?

 We need to utilize any RMS (Resource
Management system)

e We should also run with out RMS

* Support different topologies and process
dependencies

How to deploy ALFA on a laptop, few
PCs or a cluster?

 We have to develop a dynamic deployment
system (DDS):

— An independent set of utilities and interfaces,
which provide a dynamic distribution of different
user processes by any given topology
on any RMS.

26

The Dynamic Deployment System
(DDS) Should:

Deploy task or set of tasks
Use (utilize) any RMS (Slurm, Grid Engine, ...),
Secure execution of nodes (watchdog),

Support different topologies and task
dependencies

Support a central log engine

See Talk by Anar Manafov on Alice Offline week (March 2014)
https://indico.cern.ch/event/305441/

27

Elements of the topology

#i## Task

* A task is a single entity of the system.

* A task can be an executable or a script.

* A task is defined by a user with a set of props and rules.
* Each task will have a dedicated DDS watchdog process.

* A set of tasks that have to be executed on the same physical computing node.

* A container for tasks and collections.
* Only main group can contain other groups.
* Only group define multiplication factor for all its daughter elements.

28

GROUP_1
N=10

Current Status

* The Framework delivers some components which
can be connected to each other in order to
construct a processing pipeline(s).

* All components share a common base called
Device

* Devices are grouped by three categories:
e Data Readers (Simulated, raw)

* Sink, Splitter, Merger, Buffer, Proxy

30

Using multi-part messages

* |t allows us to concatenate multiple messages
into a single message without copying

* All parts of the message are treated as a single
atomic unit of transfer, however the boundaries
between message parts are strictly preserved

* A multi-part message is a message that has more
than one frame. ZeroMQ sends this message as a
single on-the-wire message and guarantees to
deliver all the message parts (one or more), or
none of them.

31

We need a proto type for ALICE O2 is
under development

Hardware System from Lol

~ 2500 links
in total

10 Gb/s

A1

| Trigger Detectors ‘

~ 250 FLPs ' + ~ 1250 EPNs *
First Level Processors Event Processing Nodes

32

O2Merger

.

for(inti=0; i < fNuminputs; i++) {
if (poller->Checklinput(i)){
received = fPayloadInputs->at(i)->Receive(msg);
}
if (received) {
if(ikNoOfMsgParts){
fPayloadOutputs->at(0)->Send(msg, ZMQ_SNDMORE);
lelse{
fPayloadOutputs->at(0)->Send(msg);

}

received = false;

}
}

EPN can be added on the fly

m

New example (flp2epn)
https://github.com/MohammadAlTurany/
FairRoot/tree/NewMQEx/example/flp2epn

34

Multiple mergers are also possible

35

Summary

The AIFA project is starting
The Communication layer is ready to use
Different data serialization methods are available

DDS and Topology parser are under development

36

37

STORM is a very attractive option but
no native support for C++ !

Storm was designed from the ground up to be usable with any programming language.
At the core of Storm is a Thrift definition for defining and submitting topologies. Since

Thrift can be used in any language, topologies can be defined and submitted from any

language.

Similarly, spouts and bolts can be defined in any language. Non-JVM spouts and bolts

communicate to Storm over a JSON-based protocol over stdin/stdout. Adapters that
implement this protocol exist for Ruby, Python, Javascript, Perl, and PHP.

storm-starter has an example topology that implements one of the bolts in Python.

http://storm.incubator.apache.org/about/multi-language.html

38

The built-in core @MQ patterns are:

Request-reply, which connects a set of clients to a set
of services. (remote procedure call and task
distribution pattern)

Publish-subscribe, which connects a set of publishers
to a set of subscribers. (data distribution pattern)

Pipeline, which connects nodes in a fan-out / fan-in
pattern that can have multiple steps, and loops.
(Parallel task distribution and collection pattern)

Exclusive pair, which connect two sockets exclusively

air gueul

f ng
R1, R4, R5, R2, R6, R3

PULL

