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Track fit with time information

   Why,  Tracking with time information? 
·Advantages: 

- More efficient at high frequency: avoids trigger dead time pileup 
- No external event trigger detectors needed 
- No external time needed in detectors in time-based detectors, as Drift Chambers 
- Take full advantage of modern good timing detectors, as timing RPCs, fast scintillators… 

·Disadvantages: 
- Including one (time) or two (+velocity) parameters more in the particle reconstruction process 
increases the dimension of the parameter space (from, typically, 4 to 5 or 6) and makes more difficult 
to find the minima: the curse of dimensionality (the volume of the space grows with the number of 
parameters and the available data may become sparse). 
·Several approaches under development: 
- 4D (CBM-FAIR): maximize the number of data, using many very accurate stations + Kalman Filter 

- TimTrack (TRASGO-USC): use raw non-reduced data + constraints between the fitted parameters 

http://en.wikipedia.org/wiki/Volume
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!
1. State vector contains: track parameters (positions, slopes) + time + velocity (slowness) 
!
2. Factorized version of the LSE method 
!
3. Algorithm works directly with non-reduced measured data 
!
4. Unknown parameters and calibration constants may be estimated at the same time 
!
5. Any measured data (momentum, deposited charge,…) can be included in the minimization 
!
6. Known constraints can be included “a priori” in the fit 
!
7. The same state vector is good for any kind of detector and hybrid layouts 

TimTrack particle reconstruction framework:



Juan A. Garzón/LabCAF-USC. 5rd. Int. Workshop for Future Chalenges in Tracking & Trigger
Track Fit with Time Information

!4

1. State vector contains: track parameters (positions, slopes) + time + velocity (slowness)

s = (X0, X’, Y0, Y’, T0, S); with S = 1/ V                          State vector

sM = (X0, X’, Y0, Y’, T0, S; M); with mass hypothesis      Extended state vector
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2. Factorized version of the LSE method
Linear Least Squares Method: 

    The Least Squares Estimator:     S(s) = [d-m(s)]’·V-1·[d-m(s)]’   
     - d:  set of nm measured data 

     - V:  covariance nm ·nm matrix of measured data   ⇒   W = V-1 (weight matrix) 

      - s:  set of ns parameters

  Linear Measurement model: 

 - m(s) =  g0 + G s: (nm equations) 

The Linear Least Squares Estimator:     S(s) = (G’·W· G)-1· G’·W·(d-g0)      

 with 

   K = G’·W· G        [dim: ns x ns]   (Configuration matrix) 

   a = G’·W·(d-g0)   [dim: ns x 1]    (Vector of reduced data) 

 Then           a = K · s     (Normal equations) 

Solution:      s = K-1· a = Ɛ· a                                       Ɛ : error matrix

TimTrack (static approach):
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2. Factorized version of the LSE method
Non Linear Least Squares Method (iterative Newton-Raphson method): 

   - m(s) =  g(s) + G (s)·s:  Measurement model (nm equations), with: 
              G(s) = ∂ m(s) /∂s 
   - Near the minimum, at s0 ≃ s: 
     m(s) ≃  g(s0) + G(s0)·s

 The Least Squares Estimator:     S(s) ≃ (G(s0)’·W· G(s0))-1· G(s0)’·W·(d-g(s0))      

  with: 

   K0 = G’(s0)·W· G(s0) 

   a0  = G’(s0)·W·(d-g(s0)) 

Solution:      s1 = K0-1· a0                                 

Iteratively:     si = Ki-1-1· ai-1                      Ɛ = Ki-1: error matrix 

until convergence.

TimTrack (static approach):
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2. Factorized version of the LSE method
Non Linear Least Squares Method with Constraints: 

   - f(s) = 0:  set of nc constraints (let suppose, nc=1).  
   - R = ∂ m(s) /∂s  : Jacobian matrix of constraint functions 
   - L(s)  = [d-m(s)]’·W·[d-m(s)]’ + 2λ· f(s) 

   - Near the minimum, at s0 ≃ s, the iterative process becomes:
✓

�s1
�1

◆
=

✓
K0 R0

0

R0 0

◆�1

·
✓

a0(s0)�K0 · s0
- f0

◆

- The next step solution and Lagrange multiplier are: 

 s1 = s0 + δs0 

 λ1 

and so on, until convergence: 

    si = si-1 + δsi-1 

    λi ≃ 0

TimTrack (static approach):
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and: K = ∑ Ki  
a = ∑ ai

(x,y)           (S=1/V)                 (x, x’,y, y’)                    (t)            (E)      data (f.ex):
K matrices:         K1                   K2                             K3                         K4              K5  

 a vectors:            a1                    a2                              a3                          a4               a5 

models:             m1                  m2                             m3                           m4             m5  

ZCherenkov CalorimeterTrackerVertex D. TOF

If we have a set of different detectors (different models):
Hybrid set-ups:

s

Ɛ = K-1              s = Ɛ·a

2. Factorized version of the LSE method

(M. scattering effects can be introduced in the corresponding Ki matrices)

TimTrack (static approach):



Juan A. Garzón/LabCAF-USC. 5rd. Int. Workshop for Future Chalenges in Tracking & Trigger
Track Fit with Time Information

!9

3. Algorithm works directly with non-reduced measured data

Typical Fitting model: 
xi = X0 + X’·zi 

yi = Y0 + Y’·zi
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TimTrack (static approach):
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3. Algorithm works directly with non-reduced measured data

t
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TT Fitting model (for X-type planes):
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3 planes ⇒ 9 measurements ⇒ 9 meas. - 6 param. = 3 d.o.f.
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TimTrack (static approach):
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3. Algorithm works directly with non-reduced measured data

TT Fitting model (for X-type planes):
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TimTrack (static approach):



Juan A. Garzón/LabCAF-USC. 5rd. Int. Workshop for Future Chalenges in Tracking & Trigger
Track Fit with Time Information

4. Unknown parameters and calibration constant may be estimated at the same time

!12

TT Fitting model with free calibration constants:
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TimTrack (static approach):

Here we assume that T0 and S are known and we want to estimate L and sS
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Example: Bethe Bloch energy loss

Detectors

    Energy loss is related to the velocity β of a particle through the Bethe- Bloch formula: 
!
!
!
that can be written, as a function of S = 1/βc,  in a simplified form as: 
!
!
!
!
with:                    and
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5. Any measured data (momentum, deposited charge…) can be included in the minimization

Sc =
1

c2
I
c

=
Ip

2 ·m
e

· T
max

�dE

dx

' k

0 ·
 
S

2 · ln 1

Ic ·
p

S

2 � S

2
c

� S

2
c � �

0

!

TimTrack (static approach):
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TT Fitting model, including measured deposited charge:

Qi ' k0 ·
 
S2 · ln 1

Ic ·
p

S2 � S2
c

� S2
c � �0

!
· dzi

L y

x

 z=0

z

x1

vs

z1

z3

z2

vs=1/ss
t1F t1B

x1

y2

t2F

t2B

x3

X0

Y0

T0 S
X’

Y’

3 planes ⇒ 3·4 = 12 measurements ⇒ 12 meas. - 6 param. = 6 d.o.f.

TimTrack (static approach):
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6. Known constraints can be included “a priori” in the fit 
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TT Fitting model, including vertex condition at z = zv:

X0 - X’·(z - zv) = 0 
Y0 - Y’·(z - zv) = 0
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3 planes ⇒ 9 measurements ⇒ 9 meas. - 6 param. - 2 constr. = 1 d.o.f.

TimTrack (static approach):
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Fitting model for 2 strip planes and a calorimeter, assuming a mass hypothesis, M:

7. The same state vector is good for any kind of detector and hybrid layouts 

Ei =
M · Sp
S2 � S2

c

2 planes + Cal. ⇒ 7 measurements ⇒ 7 meas. - 6 param. = 1 d.o.f.

TimTrack (static approach):
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Algebra basics

Z

s1

s2s1+

s2-

Zm

- Compatibility (Mahalanobis distance)

(s1, E1)  → (s1+ = F·s1,  E1+ = F’·E1·F) 
(s2, E2)  → (s2- = B·s2,  E2-  = B’·E2·B) 

dM(s1+,s2-)  = √ (s1+-s2-)’·(E1++E2-)· (s1+-s2-) 

- Reduction of state vectors:

sm

sm = [( E1+ )-1 + ( E2- ) -1]-1 ·[( E1+ )-1· s1+ + ( E2- )-1· s2- ]

Some algebra of state vectors

TimTrack with Transport of the state vector:

F B
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Z

s1m=  s1

Zm

Transport of the state vector:

Last equation has a, usually, very complicated matrix inversion. Applying the Identity 
of Woodbury: 
                                    s2 = [I-(E1P).G2’.(V2+G2.E1P.G2’)-1.G2] (s1P + (E1P.α2m)) 

s1P

s2m
s2

s2P

s3m
s3 s3P

T1 T2 T3

s1P = T1.s1

Transport of the error matrix: E1P = T1.E1.T1’
Transport of the reduced vector of data:   α1P = (T1’)-1.α1

 Reduced vector of new measured data:   α2m = G2.W2.(d2-g2)
 New state vector:                                      s2 = [(E1P)-1+ G2’.W. G2]-1 (α1P + α2m)

This solution is very similar to the one provided by the Kalman Filter!

TimTrack with Transport of the state vector:
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TimTrack vs Kalman Filter

Kalman Filter

Parameter
space

Measurement
space

rp , �p

F: Transport

r = F · rp 
�r=F·�p·F’ d, Vd

H: Measurement
m(r) = H·r + η

dr = H·r
Vr = H·�r·H’

δd = d-dr

Vc = Vr +Vd

δr = K·δd
δ�r =��r·Wr·�r 

K = �r·H’·Vc-1

Wr = H’· Vc-1· H

rp+1 = r+ δr
�p+1 = �r - δ�r 

TimTrack

Parameter
space

Measurement
space

sp, �p

F: Transport

s = F · sp 
�s=F·�p·F’ d, Wd =Vd-1

G: Measurement
m(s) = G·s + g(s) Vs = G·�s·G’

dc = d-g(s)
Vc = Vd +Vs

sd = C·dc 

δ�s = �s ·Ws ·�s

C = �s·G’·Vc-1

Ws = G’· Vc-1· G

sp+1 = (I-�s·Ws)·(s+sd)
�p+1 = �s - δ�s 

TimTrack vs Kalman Filter

TT works mainly in the Parameter space
KF works in both the Measurement and Parameter spaces
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TimTrack: example

HADES MDCs (Mini Drift Chambers)

ns

x

y

z

zi

d

Ps
→

X0

Y0

φ

nw

Qs
→

Qw
→

w

s

Pw
→

nx

Y’

X’

Pw = (Xi,Yi,Zi)
   In a drift chamber, each wire gives: 

1. The wire coordinate 

2. A time = t.o.f. + drift time + pulse time 

3. dE/dx (not used)

T0

S   Typical fitting: 
Time + wire coordinate are reduced to one coordinate  
1 plane ~ 1 coordinate ⇒ 4 planes for 4 parameters

   TT fitting: 
Time and wire coordinates are kept independent 
1 plane ~ 1 coordinate + 1 time ⇒ 3 planes for 6 parameters
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X 0
i =

X0 �Xi

zi
Y 0

i =
Y0 � Yi

zi

where:

Finally, the time t measured in a wire is:

s =

zi ·
p

X 02
+ Y 02

+ 1 · [1� (�X 0
sin ' + Y 0

cos ')(�X 0
i sin ' + Y 0

i cos ')]

1 + (�X 0
sin ' + Y 0

cos ')

2

d = zi·[�(X0
+X0

i) sin '+(Y 0
+Y 0

i ) cos ']p
1+(�X0

sin '+Y 0
cos ')

2

w = zi·[�(X0
+X0

i) cos '+(Y 0
+Y 0

i ) sin '�(�X0
sin '+Y 0

cos ')(X0Y 0
i�X0

iY
0
)]

1+(�X0
sin '+Y 0
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2

t = T0 + s
V + d

vd
+ w

vw
= T0 + s · S + d · sd + w · sw

t = T0 + s · S + d · sd + w · sw

Measured time model:

HADES MDCs (Mini Drift Chambers)

TimTrack: example

(Note: no left-right effect!)
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Standard Runge-Kutta method TimTrack method

[Ph.D. thesis of Georgy Kornakov. U.S. Compostela 2012]

~5% worst than RK method

HADES MDCs (Mini Drift Chambers)

TimTrack: example
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Conclusions

- The time may become a very important tracking parameter. 
- Using the time as a fit parameter allows to run detectors independently of 
external triggers or external conditions allowing to run experiments in a 
continuous mode. 
- Working separately with time and coordinates do offer important advantages 
mainly in hybrid environments where the same state vector is used for different 
detectors. 
- We have shown a real case, the MDCs of the HADES experiment at GSI, 
where a tracking with time has been successfully tested providing results 
comparable with other well tested methods. 
- Introducing the time, and the velocity, as tracking parameters increases the 
dimension of the space of parameters, making more difficult to find the 
minimum. Special strategies and tools should be developed.
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!
The end
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