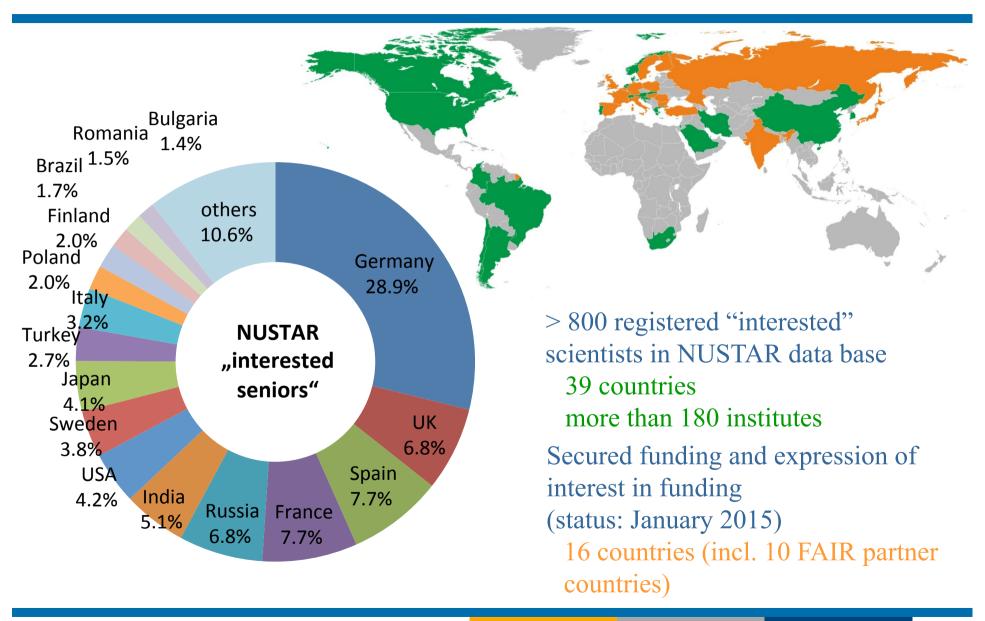


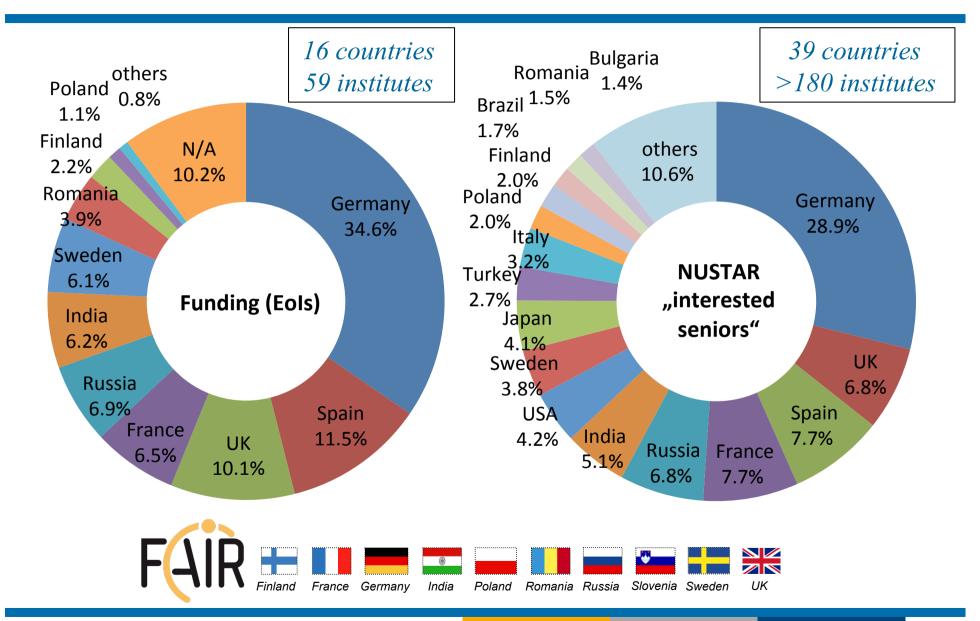
Exploring the extremes with NUSTAR @ FAIR

Nasser Kalantar-Nayestanaki KVI-CART/University of Groningen

NUSTAR week 2015

Warsaw, Poland, September 28, 2015





NUSTAR collaboration

NUSTAR Collaboration

Comparison: funding vs. senior scientists

NUSTAR - The Project 1.2

	Super-FRS	RIB production, separation, and identification
1.2.2	HISPEC/ DESPEC	In-beam $\gamma\text{-spectroscopy}$ at low and intermediate energy, n-decay, high-resolution $\gamma,\ \beta,\ \alpha,\ p,\ spectroscopy}$
1.2.3	MATS	In-trap mass measurements and decay studies
1.2.4	LaSpec	Laser spectroscopy
1.2.5	R ³ B	Kinematical complete reactions with relativistic radioactive beams
1.2.6	ILIMA	Large-scale scans of mass and lifetimes of nuclei in ground and isomeric states
1.2.10	Super-FRS	High-resolution spectrometer experiments
1.2.11	SHE	Synthesis and study of super-heavy elements
1.2.8	ELISe(*)	Elastic, inelastic, and quasi-free eA scattering
1.2.9	EXL(*)	Light-ion scattering reactions in inverse kinematics

^(*) NESR required – alternative/intermediate "operation" within MSV under discussion. SHE physics case is being evaluated by ECE.

Previous meetings

```
NUSTAR Week 2009 (Dubna, Russia)
```

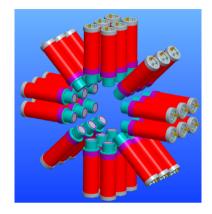
NUSTAR Week 2010 (Lund, Sweden)

NUSTAR Week 2011 (Bucharest, Romania)

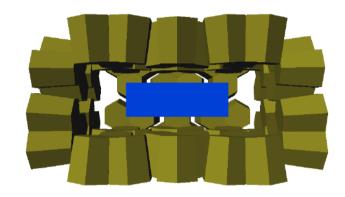
NUSTAR Week 2012 (Kolkata, India)

NUSTAR Week 2013 (Helsinki, Finland)

NUSTAR Week 2014 (Valencia, Spain)

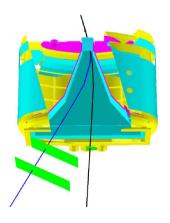

This week

NUSTAR Week 2015 (Warsaw, Poland)

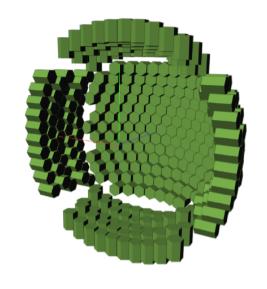

Next year

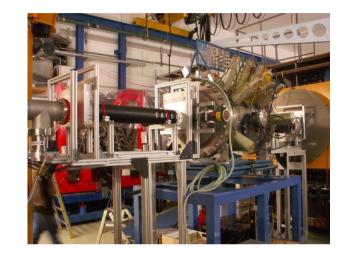
NUSTAR Week 2016 (York, UK)

TDRs approved (6th ECE meeting)


FATIMA (fast timing array)

DEGAS (DESPEC Germanium Array Spectrometer)




CALIFA forward endcap

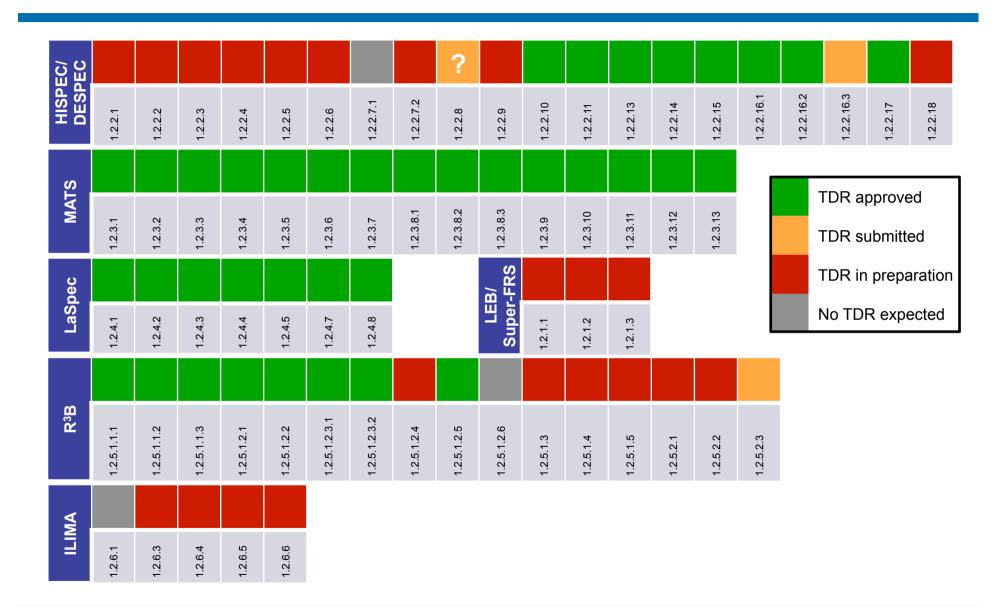
R3B tracking detectors

TDRs under evaluation (submitted)

NEDA
(Neutron detector array for HISPEC)
submitted September 2014
Final round of evaluation

ECE waiting for resubmission

ACTAR
(Active target for the R³B experiment)
submitted September 2015


Next ECE meeting in January 2016

Status Technical Design Reports (34 TDRs)

- Approved TDRs (15):
 - HISPEC/DESPEC (8): LYCCA, Plunger, AIDA, BELEN, MONSTER, DTAS, DEGAS, FATIMA
 - MATS + LaSpec (1): all subsystems
 - R³B (6): Multiplet, NeuLAND, CALIFA-barrel, CALIFA forward endcap, GLAD, tracking detectors
- Submitted (3):
 - HISPEC/DESPEC (2): AGATA, NEDA
 - R³B (1): Active target
 - AGATA treated as special case

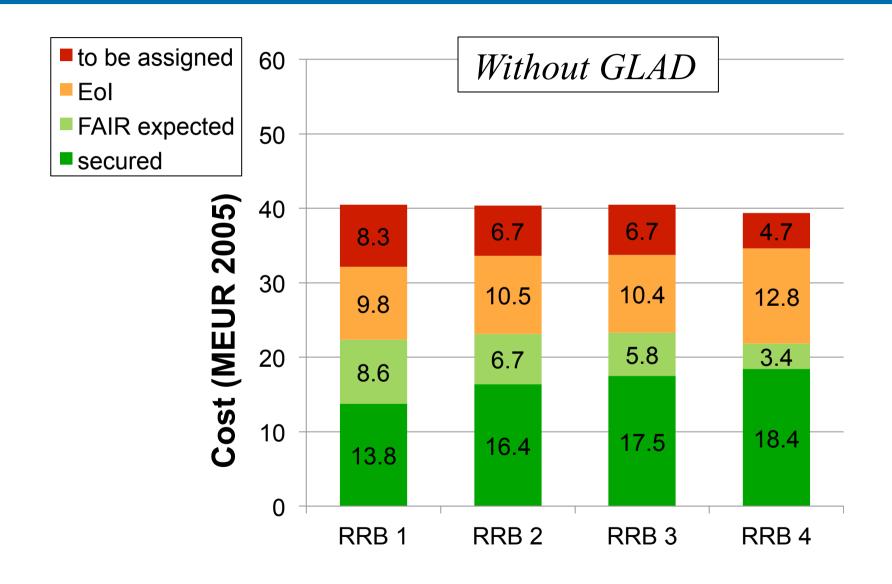
TDRs expected (16) (submission profile – August 2015)									
2014 2015 2016 2017 2018									
0	0 8 8 0								

NUSTAR work packages (63 with TDR)

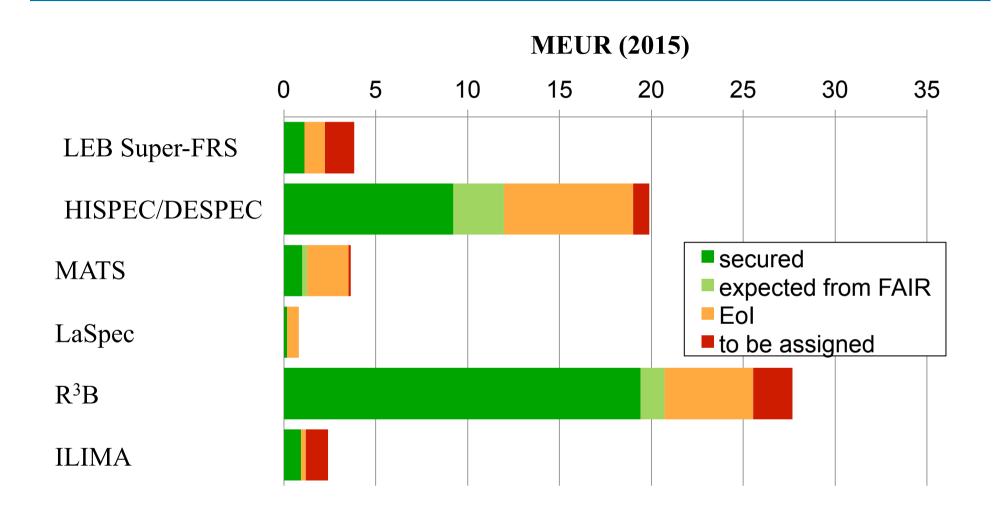
In-kind contributions to experiments (FAIR)

Status as of FAIR Council meeting #16 (June/July 2015)

Country	Contribution (in MEUR 2005)	Budget for NUSTAR (in MEUR 2005)	Expected in addition (in MEUR 2005)		
Finland	1.300	0.454	0.000		
France	2.530	2.530	0.000		
Germany	25.100	6.020	0.000		
India	5.800	0.375	1.075		
Poland	5.700	0.500	0.000		
Romania	4.000	1.820	0.000		
Russia	24.270	1.000	2.185		
Slovenia	0.000	0.000	0.000		
Sweden	4.300	1.575	0.000		
UK	5.000	4.500	0.000		
Total	78.000	18.774	3.260		


latest changes:

- Finland want to provide in-kind (MATS and LaSpec)
- Clarification of Indian contributions (DEGAS and MONSTER)
- Additional Russian contributions (submit as soon as well defined for Council)


Funding

Status experiment funding (NUSTAR) - January 12, 2015									
	Prices (KEUR in 2005)								
PSP code	Experiment/Project	Estimated cost	Secured amount	Expected FAIR	Amount spent	Eol	To be assigned		
1.2.1	LEB Super-FRS	3050	886	0	0	885	1280		
1.2.2	HISPEC/DESPEC	15773	7322	2184	3436	5564	705		
1.2.3	MATS	2893	795	206	760	1804	87		
1.2.4	LaSpec	640	144	0	144	496	0		
1.2.5	R3B	21961	15400	1039	12460	3828	1696		
1.2.6	ILIMA	1902	740	0	0	212	950		
	Sum	46219	25287	3429	16800	12789	4718		
	NUSTAR		54.7%	7.4%	36.3%	27.7%	10.2%		
1.2.1	LEB Super-FRS		29.0%	0.0%	0.0%	29.0%	42.0%		
1.2.2	HISPEC/DESPEC		46.4%	13.8%	21.8%	35.3%	4.5%		
1.2.3	MATS		27.5%	7.1%	26.3%	62.4%	3.0%		
1.2.4	LaSpec		22.5%	0.0%	22.5%	77.5%	0.0%		
1.2.5	R3B		70.1%	4.7%	56.7%	17.4%	7.7%		
1.2.6	ILIMA		38.9%	0.0%	0.0%	11.1%	49.9%		

Evolution of NUSTAR project funding (RRBs)

Status of NUSTAR experiment funding

NUSTAR MoU

- Recent developments
 - New NUSTAR organizational structures
 - NUSTAR Council Chair (to be elected end of 2015)
 - New definition of Council membership (ongoing)
 - Work on NUSTAR database ongoing
 - Additional structure for teams within institutes
 - Present roadmap:
 - Final version expected in 2016 (ready for signature)

Reminder of the Physics

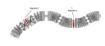
Complementarity of NUSTAR experiments

Super-FRS

HISPEC/ DESPEC

LASPEC

MATS

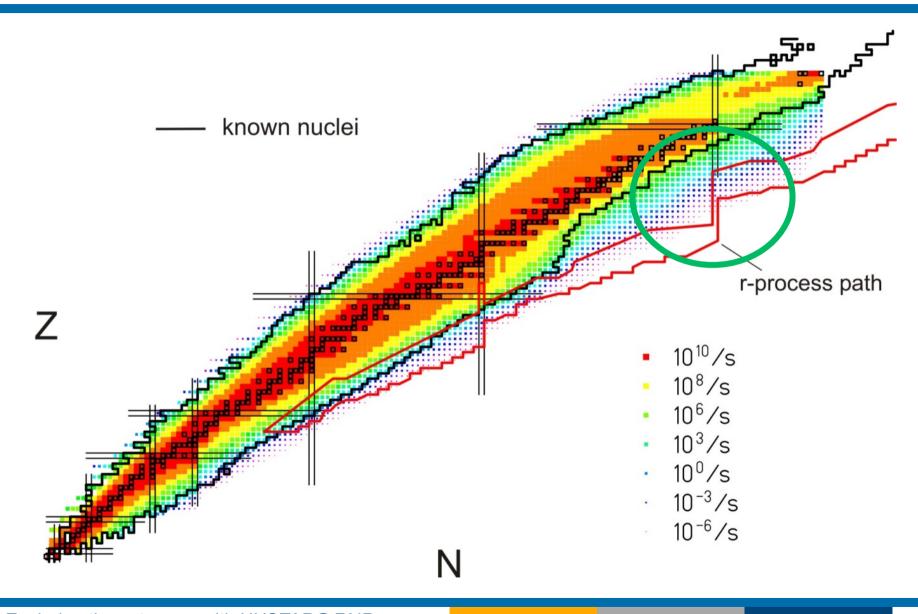

R3B

ILIMA

SHE

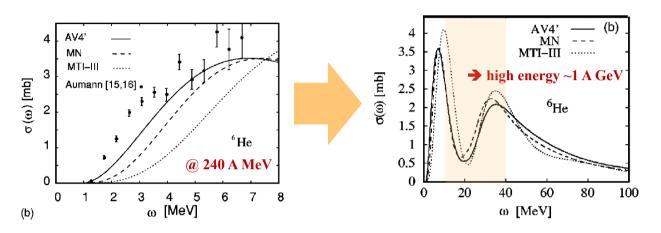
ELISE

EXL



	1				T	l	1	1	I
	Super-FRS	HISPEC/DESPEC	LASPEC	MATS	R3B	ILIMA	SHE	ELISe	EXL
Masses		Q-values, isomers		dressed ions,	unbound nuclei	bare ions,	precision		
				highest precision		mapping study	mass of SHEs		
Half-lives	psns-range	dressed ions,			resonance width,	bare ions,	μsdays		
		μSS			decay up to 100ns	msyears			
Matter radii	interaction x-				interaction x-				matter densitiy
	section				section				distribution
Charge radii	charge-changing		mean square		charge-changing			charge density	
	cross sections		radii		cross sections			distribution	
Single-	high resolution,	high-resolution	magnetic	evolution of shell	quasi-free	evolution of	shell structure		low momentum
particle	angular	particle and γ-ray	moments,	str., pairing int.,	knockout, short-	shell closures,	of SHEs		transfers
structure	momentum	spectroscopy	nucl. spins	valence nucl.	range and tensor	pairing corr.			
Collective		electromag.	quadrupole	halo structure	dipole response	changes in		electromag.	monopole
behavior		transitions	moments			deformation		transitions	resonance
EoS					polarizability,			neutron skin →	neturon skin,
					neutron skin				Compressibility
Exotic	bound mesons,								
Systems	hypernuclei,								
	nucleon res.								

Physics case



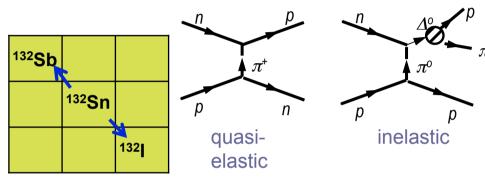
Phase 1 Physics with HISPEC/DESPEC: r-process nuclei at N=126 Previous GSI measurements contradict earlier lifetime predictions! → Mass abundances not understood! old T_{1/2} predictions Abundance new T_{1/2} predictions 3rd waiting poin 10⁻⁶ Important unique MUST. 190 200 130 160 180 r-process path NUSTAR aims to measure: -masses Mass abundances depend -β-lifetimes on the detailed structure -neutron-branchings of N=126 nuclei around the -strength distributions 3rd r-process waiting point -level structure

Phase 1 Physics with R3B setup:

Dipole strength Distributions in heavy neutron-rich nuclei

core vs. neutron skins & halos → density / asymmetry

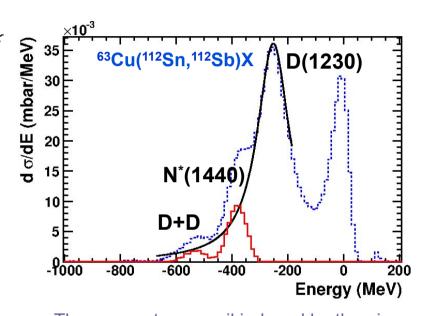
S. Bacca et al. PRL **89** (2002) 052502 PRC **69** (2004) 057001


access to EoS (e.g. neutron star) & low lying E1 strength (r-process)

Phase 1 Physics with high-resolution spectrometer:

Nucleon resonances in asymmetric nuclear matter

Isobaric charge exchange reactions

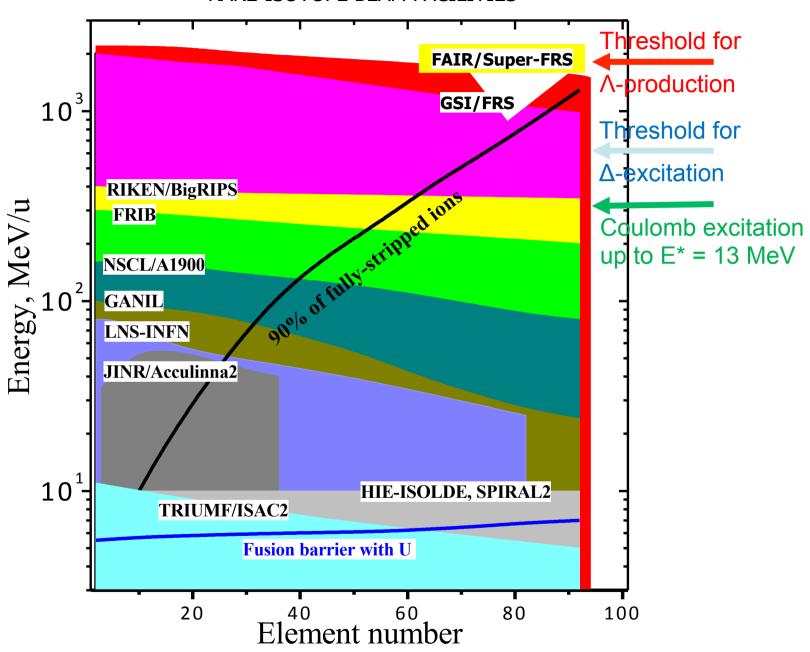


Relativistic neutron-rich projectiles (>600 MeV/u) High-resolving power spectrometer

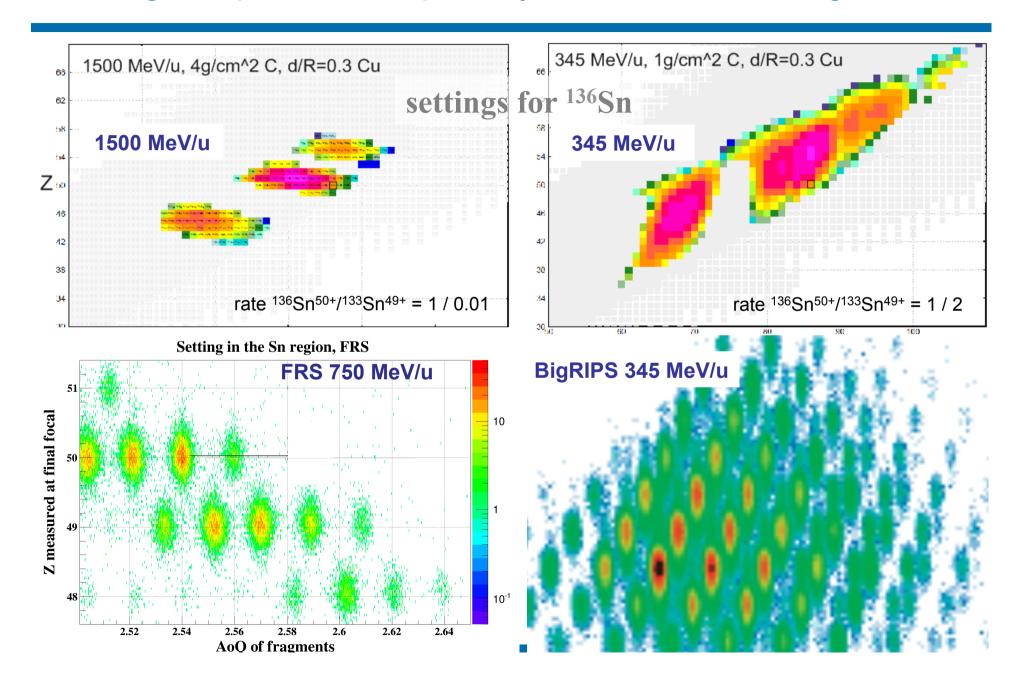
- → Pilot experiments with stable beams at FRS/GSI in 2017+
- → Experiments with asymmetric nuclear beams at Super-FRS/FAIR

Physics case

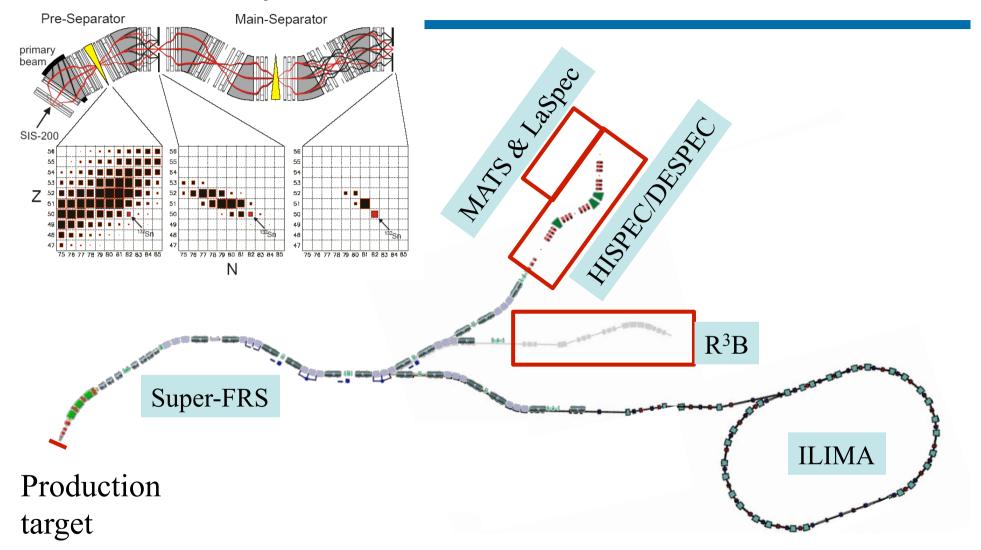
- ✓ Nuclear Structure Physics with the excited nucleon.
- ✓ In-medium baryon resonances.
- ✓ Role of nucleon excitations in massive neutron stars.
- \checkmark Constraining the symmetry energy s(n,p)/s(p,n)


The momentum recoil induced by the pion emission proves the excitation of the resonances

What are the highlights of MSV day-1 program?


- Understanding the 3rd r-process peak by means of comprehensive measurements of masses, lifetimes, neutron branchings, dipole strength, and level structure along the N=126 isotones;
- Equation of State (EoS) of asymmetric matter by means of measuring the dipole polarizability and neutron skin thicknesses of tin isotopes with N larger than 82 (in combination to the results of the first highlight);
- Exotic hypernuclei with very large N/Z asymmetry.

"PARTS" needed


RARE-ISOTOPE BEAM FACILITIES

Charge-separation capability for different Energies

NUSTAR experimental areas, ESSENTIAL to run!

Rich program due to approximately 2000 h beam time for NUSTAR experiments per year!

SIS100 essential!

Facility	U beam int. per spill at production target
previously at GSI	12x10 ⁹
after the SIS18 upgrade at GSI	8x10 ⁹
commissioning phase SIS100	2x10 ¹⁰
final full intensity with SIS100	3x10 ¹¹

- High energies for unique separation and unique experiments
- Competitive intensities throughout the periodic table

Timeline

Definition of NUSTAR experiment phases

Phase 0

R&D and experiments to be carried out with present facilities and FAIR/ NUSTAR equipment

Phase 1

- Core detectors and subsystems completed
- First measurements with FAIR/Super-FRS beams
- Carry out experiments with highest visibility as part of the core program and within the FAIR MSV

Phase 2

- FAIR evolving towards full power
- Completion of experiments within MSV
- Essentially the full program of MSV can be performed

Phase 3

 Moderate projects, which have been initiated on the way (outside MSV) can be included (e.g. experiments related to return line for rings)

Phase 4

Major new investments and upgrades for all experiments

Timeline for phase-0 and phase-1 at GSI/FAIR

2015	2016	2017	2018	2019	2020	2021	2022	2023	2024
Constr	uction ar	nd installa	ition of de	etector co	omponen	ts (to 80°	% level)		
	Comm	nissioning	of almos	st "full" se	etups at v	arious pl	aces but	primarily	at GSI
						F	Physics ru	uns at GS	SI .
_								final des	stination
Comm	issioning	and first	experim	ents with	Super-Fl	RS beam	NS .		
			(~	
				(1)				0	
				SS				has	

New detailed planning in progress ...

GSI/FAIR

Super-FRS (exp.)

Low energy branch

High energy branch

Ring branch

Latest news from FAIR/GSI

- Search for Technical and Scientific Managing Directors ongoing
- SIS-100, HEBT, and Super-FRS to be built under present financial conditions
- Negotiations with all shareholders on cost increase took place.
- waiting for final decision on full MSV at FAIR Council meeting tomorrow.
- Re-structuring of GSI (in light of future merger with FAIR and to better use available resources) ongoing
- Major milestones from civil construction and accelerator available

Transfer line to HESR/ESR/CRYRING Line-3 SIS-100 **HITRAP SIS-18** Line-3* PHELIX UNILAC FRS ESR/ APPA-Cave Line-1 HESR CRYRING SUPER-FRS Line-2 Storage ring task force (with APPA, NUSTAR & PANDA) very active!

Thank you!