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Abstract. The radiative capture of free electrons (radiative recombination) and bound
electrons (radiative electron capture) are among the most important charge changing processes
for fast, highly-charged ions. While total cross sections can be obtained by an approximate
formula with reasonable accuracy, the estimation of angular distributions and polarization
properties of the emitted radiation requires a fully relativistic treatment that is numerical
expensive. Therefore we recently started the development of a fast calculator for these radiation
characteristics. The program is based on a grid of rigorously calculated data points for free-
electron capture into bare ions, between which interpolation is performed to obtain radiation
characteristics for specific collision systems. Also capture into few-electron systems is taken into
account in an approximate way. We present first results from this development.

1. Introduction
The capture of electrons into bound states of ions is of significant importance for both experiment
and theory in the fields of atomic and plasma physics as well as for astrophysics. The capture
process is called radiative if it is accompanied by the emission of a photon that carries away
the sum of the binding energy of the final state and the incident electron kinetic energy.
If the initial electron is considered as free, the capture process is referred to as radiative
recombination (RR) [1], being the time-reversal of the photoeffect [2], whereas the capture
of a bound electron is called radiative electron capture (REC) [3, 4, 5]. The RR process is
relevant for understanding the characteristics of hot plasmas [6, 7] being present in astronomical
objects or in laboratory devices, for example electron beam ion traps and fusion devices, and it
determines the charge change-induced beam losses in electron coolers [8, 9, 10]. On the other
hand, REC is a prominent charge-changing process for fast, highly-charged ions interacting with
dedicated target materials or with residual gas being present in the beam lines of accelerators
and storage rings [11]. Moreover, when low- to medium-Z targets and heavy, highly-charged
projectile ions are considered, the to-be-captured electrons can be treated as free particles having
a momentum distribution equal to the one of the bound target states. This so-called impulse
approximation reduces the REC description to the RR cross section folded with the incident
electron momentum distribution. Consequently, both the REC and the RR processes, as well



as the photoeffect, can be treated within the same theoretical framework. This fact gave rise
to several REC measurements aiming for a deeper insight into the photoeffect while exploiting
the advantageous experimental conditions present for the time-reversed process, see [5] and
references therein.

For ongoing highly-charged ion studies at the experimental storage ring (ESR) and for
future experimental campaigns planned at the CRYRING@ESR [12] and the high-energy storage
ring (HESR) of the FAIR facility [13], a precise knowledge of REC characteristics in a broad
range of collision energies from about 1MeV/u up to 5GeV/u is highly desirable. While total
cross sections for RR and REC can be obtained by an approximate formula with reasonable
accuracy [14] up to roughly 1GeV/u, the estimation of angular distributions and polarization
properties of the emitted radiation requires a fully relativistic treatment that is non-trivial and
numerical expensive [15, 16]. Tabulated values for RR total and angular differential cross sections
covering a broad range of projectile atomic number Z and collision energy E were published by
Ichihara and Eichler [17, 18]. However, the grid points of this data set are too sparse to allow
interpolation with a good accuracy. Moreover, the photon linear polarization, that attracted
interest only recently due to the introduction of novel hard x-ray polarimeters [19, 20, 21, 22],
is not addressed at all. Thus, we started the development of a fast and precise calculator for
the differential cross section and linear polarization of radiation arising in the RR and REC
processes. This calculator is based on a dense grid of rigorously calculated RR data points for
the recombination into bare ions, between which interpolation is performed to obtain data for
the collision systems of interest. Recombination into few-electron systems is taken into account
in an approximative way. Finally, as described above, the capture of bound electrons is treated
within the impulse approximation by folding the RR cross sections with the electron momentum
distribution of the target electrons. In this report we present first results for the RR cross sections
generated by our code, which is in the following referred to as the REC calculator (RECAL).

2. Radiative Recombination
Differential cross sections and linear polarization values of the RR photons are calculated using
the algorithms provided by Fritzsche and Surzhykov which are part of the DIRAC toolkit,
see [23, 24] and references therein for details. For first test calculations, we generated a RR
data base of capture into bare projectiles for the 1s1/2 to 3d5/2 orbitals with atomic numbers
Z = 1, 7, 18, 36, 54, 66, 79, and 92 and more than 100 kinetic energies between 2MeV/u and
1GeV/u (1.1 keV to 548.6 keV electron kinetic energy). The accuracy of the RR calculation
is mainly determined by the accuracy of the continuum wavefunction representing the initial
state of the incident electron, which is described by a series expansion in terms of partial waves.
A careful choice of the number of partial waves, defined by ν = 2κmax, with κmax being the
maximum number for the Dirac angular momentum to be taken into account, is of particular
importance. More precisely, a too small choice of κmax may lead to truncation errors, while,
on the other hand, a too large value increases significantly computation time (approximately
scaling with κ3max) and eventually leads to an explosion of numerical errors due to the rapid
oscillations of the radial part of the continuum wavefunction. With a proper choice of κmax an
uncertainty on the percent level can be reached for the parameter range concerned in this work.

The RR photon characteristics for a specific projectile and collision energy are obtained from
an interpolation between the rigorously calculated data points using a method proposed by
Akima [25]. To verify the quality of this procedure, in Fig. 1 the angular differential cross section
for photons stemming from the recombination into the ground state and the 2p3/2 orbital of bare
lead ions (Z=82) are compared to reference calculations published in [18]. For RR into the 1s1/2
orbital and electron kinetic energies lower than 300 keV (equals 547MeV/u projectile energy)
nearly perfect agreement is found, while an increasing deviation is seen for higher collision
energies. This due to the fact that the proper κmax number increases with higher energies and



Figure 1. Angular differential radiative recombination cross section into the 1s1/2 and the
2p3/2 of bare lead ions for various collision energies. Fully relativistic calculations are compared
to RECAL predictions. An increasing deviation at high collision energies is seen due to an
improper choice of κmax for the underlying RR data base of the RECAL calculator, see text for
details.

in our first attempt we failed to chose large enough κmax values for the relativistic regime of
collision energies. Moreover, for RR into the 2p3/2 orbital, also at the lowest collision energy a
small deviation between rigorous calculations and RECAL predictions is found in Fig. 1. We
are still investigating if this feature is also due to a wrong maximum partial wave number or if it
is caused by an improper interpolation along the Z axis. Here one has to stress that depending
on κmax the rigorous calculation for a single collision energy and a single final orbital may take
up to a few hours of computation time on a standard desktop computer. We are currently
performing systematic test calculations to obtain a map of optimum κmax values as a function of
the collision energy, final electron state and projectile Z. Therefore, we compare the obtained
radiation characteristics to reliable reference calculations such as the data published in [17, 18].
As mentioned above, for the linear polarization of RR/REC photons no tables with references
values are available, so here we rely on the convergence of the polarization characteristics with
increasing κmax as the only criterion.

So far only recombination into finally hydrogen-like ions was considered. However, there is the
need to have RR/REC cross sections with a reasonable precision also for few-electron systems. It
was previously shown that for few-electron, heavy ions and collision energies above a few MeV/u
the RR process can be approximated with a single-electron model using an appropriate effective
nuclear charge Zeff as in that case the electron-electron interaction is very small compared to
the interaction of each electron with the nuclear charge [26]. Effective Z values for the RECAL
code were determined from a table of successive ionization potentials originally compiled for the
SUK program that is applied for electron beam ion trap simulations [27, 28].

In Fig. 2 we compare the RECAL results for RR into initially hydrogen-like and lithium-
like uranium ions to rigorous multi-configuration Dirac Fock (MCDF) calculations presented



Figure 2. Angular differential radiative recombination cross section into hydrogen-like (final
state: helium-like) and lithium-like (final state: beryllium-like) uranium ions for various collision
energies. Rigorous MCDF calculations [26] are compared to RECAL predictions. Good
agreement is found for the medium collision energy, while for the low and the high energy
data significant deviations are seen for the finally beryllium-like system.



in [26] (results from Coulomb and Babushkin gauges were averaged). Note that the theory
cross sections for recombination into neighboring J-levels of the 1s22s3s and the 1s22s2p3/2
configurations were summed up to allow a comparison to the RECAL predictions which rely
on a single-electron data base. However, in many cases these levels differ only by a few eV
and are hardly resolved by standard solid-state x-ray detectors. For recombination into the
ground state of initially hydrogen-like uranium RECAL matches the theory values with good
agreement. In this case one can expect that the huge binding energy of the final state suppresses
any significant electron-electron interaction during the capture into the projectile. In contrast,
for the initially lithium-like system only for a moderate collision energy of 21.8MeV/u good
agreement is found, while for the low and the high energy data significant deviations are seen.
A possible explanation is that for low collision energies the electron-electron interaction can not
be neglected. On the other hand at high energies the chosen κmax might be too small as at least
for the 1s22s2p3/2 configuration and at observation angles below 30◦ an artefact due to a wrong
κmax value is visible in the RECAL data.

3. Summary
We presented first results from a fast calculator for the radiation characteristics of the RR and
REC processes. Such a tool will be helpful for the planning and interpretation of energetic
ion-atom collision experiments at the new FAIR facility as well as for ongoing heavy ion studies
at GSI. A comparison to rigorously calculated data shows in general a reasonable agreement.
However, significant deviations are observed for parameters where the underlying data base of
the calculator was produced using improper values for the maximum number of partial waves
κmax for the series expansion representing the incident electron. A systematic study is needed
to determine valid κmax values throughout the full parameter range of interest.
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