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Abstract. The structure of the light exotic nucleus 8B is investigated in the Fermionic
Molecular Dynamics (FMD) model. The decay of 8B is responsible for almost the entire high-
energy solar-neutrino flux, making structure calculations of 8B important for determining the
solar core temperature. 8B is a proton halo candidate thought to exhibit clustering. FMD uses a
wave-packet basis and is well-suited for modelling clustering and halos. For a multiconfiguration
treatment we construct the many-body Hilbert space from antisymmetrised angular-momentum
projected 8-particle states. First results show formation of a proton halo.

Introduction
The physics of weakly-bound nuclear systems is a fruitful area of study, which investigates the
location of the proton- and neutron-driplines, as well as the structures occuring at such “exotic”
proton-to-neutron ratios, such as the formation of neutron- and proton-halos. While there are
several well-known neutron-halo nuclei, there are very few proton-halo candidates: the first ex-
cited state of 17F, and the ground state of 8B are the best-known.

The nucleus 8B also plays a role in astrophysics, occuring in the third branch of the proton:proton
(pp) chain. In fact, the decay of 8B to 8Be is responsible for over 75% of the high-energy solar
neutrino flux [1]. Since this decay rate depends on the rate of production of 8B via 7Be(p,γ)8B,
(which is itself dependent on 8B structure), knowledge of the 8B ground state wavefunction is
important input into such reaction calculations.

A proton halo in 8B is inferred from the low proton binding energy of 0.137 MeV [2], nar-
row longitudinal momentum distribution of 7Be following breakup [3] and a matter radius of
2.38 ± 0.04 fm [4], but 8B proton radius is not known. An 8B proton halo would affect the
capture cross-section for a proton on 7Be quite strongly, since the radiative capture process is
dominated by contributions from regions far outside the nuclear radius [5].

7Be is in itself loosely-bound [6], which means that the 8B core may have the structure α+3He.
What then, is the correct picture for 8B? A shell-model type picture, a 7Be core plus proton, or
even the cluster structure α+3 He + p? In order to access all these possibilities, one may choose
to do such calculations in the Fermionic Molecular Dynamics (FMD) model, since it offers the
possibility to access both shell-model type states and clustering (see [7] and refs. therein). FMD
has been used for such diverse structures as the Hoyle state [8] and the neutron halo of 10Be [9].
In this paper, I outline the model and present preliminary results for 8B.



Fermionic Molecular Dynamics
Fermionic Molecular Dynamics (FMD) [10] is a microscopic model for light- to medium-mass
nuclei. Overviews of the model are in [7, 10–12] and a summary is provided here.

Protons and neutrons are the relevant degrees of freedom in nuclear systems, so we choose
intrinsic many-body configurations |Q〉, which are Slater determinants of single-particle states
|q〉, or [10]:

|Q〉 = Â {|q1〉 ⊗ ...⊗ |qA〉} (1)

where Â is the antisymmetrisation operator. The single-particle states are:

|q〉 =
∑
i

|ai,~bi〉 ⊗ |χ↑
i , χ

↓
i 〉 ⊗ |ξi〉ci, (2)

where a superposition of wave-packets |ai,~bi〉 can be used to describe extended distributions (e.g.

halos). Parameters ~b relate to the mean position and mean momentum of the wave-packets and
parameters a give the width of the wave-packets [11]. The ket |χ↑, χ↓〉 is the most general spinor,
allowing all possible orientations of the nucleon spin. The isospin part of the state is given as
|ξ〉 (i.e. proton or neutron).

In co-ordinate space one has:

〈~x|a,~b〉 = exp

{
−(~x−~b)2

2a

}
. (3)

Slater determinants like that in Equation 1 are not states of good angular momentum or parity,
so these need to be projected out. The projection operators are given by [11]:

P̂ π =
1

2
(1 + πΠ̂)

P̂ JMK =
2J + 1

8π2

∫
dΩDJ

MK(Ω)
*
R̂(Ω),

(4)

where DJ
MK(α, β, γ) is the Wigner D-matrix, R̂(α, β, γ) is the rotation operator and Π̂ is the

parity operator [7]. The action of the projection operators is to project states |Q; JπMK〉 from
intrinsic states |Q〉. There are potentially 2J + 1 different K states for every state of good J ,
depending on the symmetries of the intrinsic state. By diagonalising the Hamiltonian in the set
of K-projected states, we obtain the basis states

|Q; JπMα〉 =
∑
K

|Q; JπMK〉cJπα
K . (5)

The parameters {qν} describing the intrinsic basis states |Q〉 are obtained by requiring:

min
{qν}

〈Q; JπMα|Ĥ − T̂cm|Q; JπMα〉
〈Q; JπMα|Q; JπMα〉

, (6)

where T̂cm is the operator for the centre-of-mass kinetic energy. The minimisation of the energy
of the projected state (Equation 6) is referred to as Variation after Projection (VAP).

The VAP states |Q; JπMα〉 provide a good first approximation for the description of the nucleus.
To improve the description, additional basis states can be generated by performing minimisation
(Eq. 6) subject to constraints. These constraints could be on e.g. radii, moments or deformation
parameters [7]. The FMD basis is general-enough to describe both shell-model like many-body
states as well as clustering states [7].



8B
Projected configurations with angular momenta and parities of 0+, 1+, 2+ and 3+ were created
for 8B, since with a 7Be core (in its 3/2- ground state or first excited 1/2- state) plus a p3/2
proton, one can form states of total angular momentum 0 to 3. As per Equation 2, one Gaussian
wave-packet was used to describe each of the neutrons and four of the protons in phase-space,
while the fifth proton was described spatially by a superposition of two Gaussians, to allow for
a possible extended distribution. A UCOM-transformed AV18 interaction [13] was used, for
two reasons. Firstly, because AV18 is a realistic interaction (it reproduces the Nijmegen phase-
shifts [14]), and secondly because, for application in FMD, the interaction is required to be in an
operator representation, making UCOM the appropriate method to soften the interaction [13].
The Hamiltonian was diagonalised in this space, and ground- and excited state energies, radii
and transition probabilities were extracted for the resulting eigenstates. Plots of the proton-
and neutron-density distributions for the intrinsic states obtained by the VAP procedure are
shown in Figure 1. One can note in this figure the appearance of clustering and of an extended
distribution for a proton.

The level-scheme is provided as Fig 2. The calculated levels represent the energies for the
eigenstates of the UCOM Hamiltonian, calculated in the space of VAP states. The calculated
energies are compared to the calculated 7Be threshold (the ground-state energy for 7Be calcu-
lated in an FMD calculation); and one can note a slight underbinding with respect to threshold.
Including more basis states (which will access more configurations) will improve this binding.
The discrepancy between the experimental and theoretical binding energies is mainly due to
missing tensor correlations in the FMD wave functions.

The radii and transition-strengths are provided in Tables 1 and 2 respectively. When con-
sidering the radii, one may note that the calculated matter radius is smaller than the measured
radius. This is again due to the small basis set used: by including more basis configurations one
may better-approximate the long tail for the spatial distribution of the loosely-bound proton and
so improve the radius. One may note in Table 2 that the 3+→2+ transition is well-reproduced.

Table 1: Calculated rms matter-, charge-, proton- and neutron-radii, magnetic dipole moment (µ) and
electric quadrupole moment (Q) for 8B, for the basis of 4 VAP states (VAP). The calculations are
compared to experiment, where values are known.

Rmatter [fm] Rcharge [fm] Rp [fm] Rn [fm] µ [µN ] Q [efm2]
Exp. 2.38±0.04 [4] 1.0355±0.0003 [15] 6.83±0.21 [16]
VAP 2.262 2.523 2.374 2.062 1.228 4.863



Table 2: Transition strengths B(ΛM) calculated for the known transitions in 8B (shown in black) and
for some as-yet-unmeasured transitions (shown in red). Calculations were in the VAP basis as were those
in Table 1. Where the character of the transition is not known, all possibilities are considered.

Energy [MeV] States Type Basis B(ΛM) (meas.) B(ΛM) (calc.)

0.77 1+ → 2+ M1 VAP 2.63(12) µ2N [2] 3.992 µ2N
2.32 3+ → 2+ M1 VAP 0.38(19) µ2N [2] 0.274 µ2N
2.55 2+ → 2+ (M1) VAP 0.060 µ2N
3.30 1+ → 2+ (E2) VAP 5.438 e2fm4

1+ → 2+ (M1) VAP 0.467 µ2N

2+ 1+ 3+ 0+

Figure 1: Proton- (red) and neutron-densities (blue) for the VAP basis configurations. The numbers on
the contour lines give nucleon density in units of the saturation density ρ0 = 0.17fm−1. Numbers to the
right show angular momentum and parity of the configuration.
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Figure 2: Level-scheme of 8B comparing experimental and calculated ground and excited state energies.
The thin lines indicate the 7Be+p threshold in (a) the experimental and (b) the calculated case.

Conclusion
The large charge-, proton- and matter radii compared to neutron radius (Table 1) indicate
proton halo formation in this model of 8B. This is in line with previous studies (e.g. [3,16,17]).
The extended proton distribution also shows up clearly in calculated proton densities (Fig. 1).
Since all parameter values describing the nucleon states are dictated by the minimisation process
(Eq. 6), including a second Gaussian wavepacket for the fifth proton allows, rather than dictates,
its extended spatial distribution. If the second Gaussian were not needed to describe the proton’s
spatial distribution, its parameters would evaluate under minimisation such that its contribution
would be negligible. Thus we may say that, under the interaction used, proton halo formation is
indeed favoured in 8B. Work on extending the basis by imposing constraints on matter-, proton-
and neutron radii is underway.

References
[1] Xu H M et al. 1994. Phys. Rev. Lett., 73:2027.
[2] Tilley D R et al. 2004. Nucl. Phys. , A745:155.
[3] Smedberg M et al. 1999. Phys. Lett. B, 452:1.
[4] Ozawa A et al. 2001. Nucl. Phys., A693:32.
[5] Rolfs C S 1973. Nucl. Phys., A217:27.
[6] Neff T 2011. Phys. Rev. Lett., 106:042502.
[7] Neff T and Feldmeier H 2010. Cluster Structure in the FMD Approach. (Research Signpost Publishing:

Kerala). pp 67-94.
[8] Feldmeier H et al. 2007. Phys. Rev. Lett., 98:032501.
[9] Zakova A et al. 2010. J. Phys. G.: Part. Nucl. Phys., 37:055107.

[10] Feldmeier H and Schnack J 1997. Prog. Part. Nucl. Phys., 39:343.
[11] Neff T and Feldmeier H 2008. Eur. Phys. J. Special Topics, 156:69.
[12] Bieler K Feldmeier H and Schnack J 1995. Nucl. Phys., A593:493.
[13] Feldmeier H et al. 2005. Phys. Rev. C, 72:034002.
[14] Wiringa R B Stoks V G J and Schiavilla R 1995. Phys. Rev. C, 51:38.
[15] Shirley V S et al. (Eds.) 1996. Table of Isotopes (Vol. 1). (John Wiley and sons publishing: New York).
[16] Minamisono T et al. 1992. Phys. Rev. Lett., 69:2058.
[17] Werner R E et al. 1995. Phys. Rev. C, 52:1106(R).


