Light Hadron Spectroscopy at BESIII

Jifeng Hu
(on behalf of the BESIII Collaboration)
Physics Department, University of Torino, Via Pietro Giuria 1, Torino
E-mail: hu@to.infn.it

Abstract

With data of 1.3 billion J / ψ events and 106 million $\psi(2 S)$ events collected with the BESIII detector operating at the BEPCII, many different analyses were performed. New baryon states were observed in partial wave analyses of charmonium decays. A comparison between the branching fraction of $\mathcal{B}\left(J / \psi \rightarrow \gamma f_{0}(1710)\right)$ to the recent lattice QCD prediction of J / ψ decaying to glueball ground state $\mathcal{B}\left(J / \psi \rightarrow \gamma G\left(0^{++}\right)\right)$benefits from new results of $J / \psi \rightarrow \gamma \eta \eta$. The observation of $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{+}\left(\pi^{0}\right) \pi^{-}\left(\pi^{0}\right)$ via the radiative decay of $J / \psi \rightarrow \gamma \eta^{\prime}$ agrees with the combined model of chiral perturbation theory and vector-meson dominance approach.

1. Introduction

Rich quantum states are allowed within the quantum chromodynamics (QCD) theory. However, glue-balls still remain unknown in experiments due to the difficult separation from light mesons. J / ψ radiative decay providing a very clean laboratory of scalar and tensor glueballs, has long been used for hunting for glueballs. The Crystal Ball Collaboration [1] made the first observation of $f_{0}(1710)$ via $J / \psi \rightarrow \gamma \eta \eta$, but suffered from low statistics. Recent lattice QCD calculations $[2,3]$ tell that, the mass of glueball ground state with $J^{P C}=0^{++}$lies in the region of 1.5 to $1.7 \mathrm{GeV} / c^{2}$, and the branching fraction of $J / \psi \rightarrow \gamma G\left(0^{++}\right)$has a value of 3.8×10^{-3}. An comparison could be made by summing up branching fractions of $J / \psi \rightarrow \gamma f_{0}(1710) \rightarrow \gamma K^{+} K^{-}(\gamma \omega \omega, \gamma \pi \pi)$ and the new measurement of $J / \psi \rightarrow \gamma f_{0}(1710) \rightarrow$ $\gamma \eta \eta$. Another problem known as the "missing baryons" [4, 5] can be further understood by investigating new baryon states beyond fixed target experiments $[6,7,8]$, because charmonium decays produced at the BESIII experiment take advantages of 93% acceptance of 4π coverage and high statistics to search for the missing baryons [9] [10] [11, 12]. η^{\prime} meson interpreted as a singlet state arising due to the axial $U(1)$ anomaly [13, 14], still remains active in theoretical studies aiming at extensions of chiral perturbation theory [17], from its discovery in $1964[15,16]$. New insight could be made by the four-pion decays of $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{+(0)} \pi^{-(0)}$, which could be mediated by the pentagon anomaly instead of suppression according to approximate symmetries. In experiment, no observation of the four-pion decays has been made only the best upper limits reported by the CLEO collaboration: $\mathcal{B}_{1}\left(\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}\right)<2.4 \times 10^{-4}$ and $\mathcal{B}_{2}\left(\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}\right)<2.6 \times 10^{-3}$ at the 90% confidence level (C.L.) [18] excluding the branching ratio of 1.0×10^{-3} calculated using the broken- $\mathrm{SU}_{6} \times \mathrm{O}_{3}$ quark model [19] three decades ago. Recent predictions $\mathcal{B}_{1}=(1.0 \pm 0.3) \times 10^{-4}$ and $\mathcal{B}_{2}=(2.4 \pm 0.7) \times 10^{-4}$ employed a combined model of chiral perturbation theory (ChPT) and a vector-meson dominance (VMD) approach [20].

In this paper, the results of partial wave analysis (PWA) on $J / \psi \rightarrow \gamma \eta \eta$ are presented based on a sample of 225 million J / ψ events [21]. The PWA of the decay $\psi(2 S) \rightarrow p \bar{p} \pi^{0}$ is
performed using the 106 million $\psi(2 S)$ events. The first observation of $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$and $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}$ takes advantage of $J / \psi \rightarrow \gamma \eta^{\prime}$ decay with data of $1.3 \times 10^{9} \mathrm{~J} / \psi$ events $\left(2.25 \times 10^{8}\right.$ events in 2009 and 1.09×10^{9} events in 2012) collected at the center of mass energy of 3.097 GeV with the BESIII detector [22].

The BESIII detector is a general-purpose spectrometer located at the Beijing Electron Position Collider (BEPCII) [23], designed with a double-ring $e^{+} e^{-}$collider structure. The designed peak luminosity of $10^{33} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$ is optimized at the center of mass energy of 3.773 GeV . The cylindrical core of the BESIII detector consists of a helium-based main drift chamber (MDC), a plastic scintillator time-of-flight system (TOF), and a $\mathrm{CsI}(\mathrm{Tl})$ electromagnetic calorimeter (EMC), which are all enclosed in a superconducting solenoidal magnet providing a 1.0 T (0.9 T in 2012) magnetic field. The acceptance of charged particles and photons has 93% over 4π coverage. The charged-particle momentum resolution at $1 \mathrm{GeV} / c$ is 0.5%, and the $d E / d x$ resolution is 6%. The photon energy resolution is $2.5 \%(5 \%)$ at 1 GeV in the barrel (endcaps). The time resolution of TOF is 80 ps for the barrel and 110 ps for the end caps.

2. Partial wave analysis of $J / \psi \rightarrow \gamma \eta \eta$

This analysis[24] was performed using the relativistic covariant tensor amplitude method. The resonance parameters and branching fractions are listed in Table 1. Projections shown in Fig. 1 indicate that the dominant 0^{++}and 2^{++}components are from the $f_{0}(1710), f_{0}(2100), f_{0}(1500)$, $f_{2}^{\prime}(1525), f_{2}(1810)$ and $f_{2}(2340)$. Among all scalar components, the measured properties of dominant $f_{0}(1710)$ are consistent with results of $J / \psi \rightarrow \gamma K \bar{K}$ [25] and $J / \psi \rightarrow \gamma \pi \pi$ [26] at BESII. The production rate for the $f_{0}(1500)$ is lower than the one for $f_{0}(1710)$ and $f_{0}(2100)$ by almost one order. The first experimental evidence for the $f_{0}(1790)$ was observed in $J / \psi \rightarrow \phi \pi \pi$ but no evidence was observed in $J / \psi \rightarrow \phi K \bar{K}$ [27]. Tensor components, shown as the histogram in Fig. 1 (i), stand for their total contribution, where the peak component around $1.5 \mathrm{GeV} / c^{2}$ is the well-established resonance $f_{2}^{\prime}(1525)$ and the components contributing to the bump around $2.1 \mathrm{GeV} / c^{2}$ are from $f_{2}(1810)$ and $f_{2}(2340)$. A tensor component around $1.8 \mathrm{GeV} / c^{2}$ with a statistical significance of 6.4σ exists and can not be distinguished from $f_{2}(1810), f_{2}(1910)$ and $f_{2}(1950)$ with the present statistics, denoted as $f_{2}(1810)$ in this analysis, and the ambiguous assignment of $f_{2}(1810)$ or $f_{2}(1950)$ is considered as a source of systematic error. Other possible tensor resonances, $f_{2}(2010), f_{2}(2150), f_{J}(2220), f_{2}(2300)$ and $f_{2}(2340)$, are also considered in alternative combinations to get the optimized solution. The best fit favors the presence of $f_{2}(2340)$. Since the mass of $f_{2}(2300)$ is close to $f_{2}(2340)$, an attempt was made by replacing $f_{2}(2340)$ with $f_{2}(2300)$ using the fixed mass and width referenced to PDG [28], and the log likelihood value gets worse by 15 . The narrow $f_{J}(2220)$ (also known as $\xi(2230)$) reported by MarkIII [29] and BES [30] shows no evidence in this analysis. Component $f_{J}(2220)$ has a significance of 0.4σ. None of the other contributions from scalar mesons, $f_{0}(1370), f_{0}(2020)$, $f_{0}(2200)$ and $f_{0}(2330)$, have a significance greater than 5.0σ, thus they are excluded.

Table 1. Summary of the PWA results. The first errors are statistical and the second ones are systematic.

Resonance	$\operatorname{Mass}\left(\mathrm{MeV} / \mathrm{c}^{2}\right)$	Width(MeV/c ${ }^{2}$)	$\mathcal{B}(J / \psi \rightarrow \gamma X \rightarrow \gamma \eta \eta)$	Significance
$f_{0}(1500)$	14688_{-15-74}^{+14+23}	$136_{-26-100}^{+41+28}$	$\left(1.65_{-0.31-1.40}^{+0.26+0.51}\right) \times 10^{-5}$	8.2σ
$f_{0}(1710)$	$1759 \pm 6_{-25}^{+14}$	$172 \pm 10_{-16}^{+32}$	$\left(2.35_{-0.11-0.74}^{+0.13+1.24}\right) \times 10^{-4}$	25.0 σ
$f_{0}(2100)$	$2081 \pm 13_{-36}^{+24}$	273_{-24-23}^{+27+70}	$\left(1.13_{-0.10}^{+0.09+0.284}\right) \times 10^{-4}$	13.9
$f_{2}^{\prime}(1525)$	$1513 \pm 5_{-10}^{+4}$	75_{-10-8}^{+12+16}	$\left(3.42_{-0.51-1.30}^{+0.43+1.37}\right) \times 10^{-5}$	11.0 σ
$f_{2}(1810)$	1822_{-24-57}^{+29+66}	$229_{-42-155}^{+52+88}$	$\left(5.40_{-0.67}^{+0.60+3.35}\right) \times 10^{-5}$	6.4σ
$f_{2}(2340)$	$2362_{-30-63}^{+31+140}$	$334{ }_{-54-100}^{+62+165}$	$\left(5.60_{-0.65-2.07}^{+0.62+2.37}\right) \times 10^{-5}$	7.6σ

Figure 1. Contribution of the components. (a) $f_{0}(1500)$, (b) $f_{0}(1710)$, (c) $f_{0}(2100)$, (d) $f_{2}^{\prime}(1525)$, (e) $f_{2}(1810)$, (f) $f_{2}(2340)$, (g) 0^{++}phase space, (h) total 0^{++}component, and (i) total 2^{++}component. The dots with error bars are data with background subtracted, and the solid histograms are the projection of the PWA.
3. Observation of $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$and $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}$

This analysis [37] provides clean η^{\prime} data via J / ψ radiative decay. The $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$invariant mass spectrum is shown in Fig. 2(a), where an η^{\prime} peak is clearly observed in the inset plot. The projections of the fit to $M_{\pi^{+} \pi^{-} \pi^{+(0)} \pi^{-(0)}}$ in the η^{\prime} mass region are shown in Figs. 2(b) and (c), where the shape of the sum of signal and background shapes agree well with data. $199 \pm 16 \eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$events was observed with a statistical significance of 18σ and 84 ± 16 $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}$ events with a statistical significance of 5σ respectively. The $M_{\pi^{+} \pi^{-}}$spectrum of data carrying key information of η^{\prime} decay mechanism is extracted from fitting the $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$ mass spectrum and subtracting background. The MC spectrum employs two models, a phase space model and a combined model of ChPT and VMD implemented using decay amplitudes in Ref. [20]. To make comparison, the MC $M_{\pi^{+} \pi^{-}}$spectrum is divided into 38 bins in the region of $[0.28,0.66] \mathrm{GeV} / c^{2}$ for decay of $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$, as shown in Fig. 2 (d) (four entries per event), where the errors are statistical only. Clearly, the combined model agrees with data better than the phase space model. Branching fractions of $\mathcal{B}\left(J / \psi \rightarrow \gamma \eta^{\prime}, \eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}\right)$ and $\mathcal{B}\left(J / \psi \rightarrow \gamma \eta^{\prime}, \eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}\right)$ are determined to be $(4.40 \pm 0.35 \pm 0.30) \times 10^{-7}$ and $(9.38 \pm 1.79 \pm 0.89) \times 10^{-7}$ respectively.

4. Observation of two new N^{*} resonances in $\psi(3686) \rightarrow p \bar{p} \pi^{0}$

This analysis[31] takes advantage of a data set with larger statistics than that at CLEOc shows more than one N^{*} state below $1700 \mathrm{MeV} / c^{2}$, which are easily seen in the $p \pi^{0}$ and $\bar{p} \pi^{0}$ mass

Figure 2. (a) The invariant mass distributions of $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$. Results of the fits to (b) $M_{\pi^{+} \pi^{-} \pi^{+} \pi^{-}}$and (c) $M_{\pi^{+} \pi^{-} \pi^{0} \pi^{0}}$, where the background contributions are displayed as the hatched histograms. (d) The comparison of $M_{\pi^{+} \pi^{-}}$(four entries per event) between data and two different models, where the dots with error bars are for the background-subtracted data, the solid line is for the ChPT and VMD model, and the dashed line is for the phase space.
spectra, and the threshold enhancement in the $p \bar{p}$ mass spectrum. To better understand the structure of multi-resonances and their interference, a partial wave analysis is performed and components' contributions are shown in Fig. 3. Plot (a) shows the contributions of $N(1440)$, $N(1520), N(1535)$ and $N(1650)$ with clear peaks, the tails at the high mass region come from the interference effects. Plot (b) shows the contributions of $N(940), N(1720), N(2300)$ and $N(2570)$. Two new N^{*} resonances, $N(2300)$ and $N(2570)$ are observed with number of events 948 ± 68 and 795 ± 45 respectively. No clear evidence for $N(1885)$ or $N(2065)$ were found. More investigations such as $J / \psi \rightarrow \eta p \bar{p}[33], J / \psi \rightarrow \lambda \Sigma^{0}[34], \psi^{\prime} \rightarrow \bar{p} K \Sigma^{0}[35], \chi_{c 0} \rightarrow p \bar{n} \pi^{-}[36]$ also explored new baryon states.

5. Summary

The PWA results of $J / \psi \rightarrow \gamma \eta \eta$ as summarized in Table 1 combining with branching fractions of $J / \psi \rightarrow \gamma f_{0}(1710) \rightarrow \gamma X X$, were employed to compare the recent lattice QCD prediction of $J / \psi \rightarrow \gamma G\left(0^{++}\right)$. A series of recently observed baryon states aim to improve further understanding of the quark model. The analyses of $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{+} \pi^{-}$and $\eta^{\prime} \rightarrow \pi^{+} \pi^{-} \pi^{0} \pi^{0}$ agree with the combined model of chiral perturbation theory and vector-meson dominance approach.

References

[1] C. Edwards et al., Phys. Rev. Lett. 48, 458 (1982).
[2] Y. Chen et al., Phys. Rev. D 73, 014516 (2006).
[3] E. Gregory et al., JHEP 1210, 170 (2012).
[4] S. Capstick and W. Roberts, Phys. Rev. D 47, 1994 (1993).

Figure 3. The contribution of each intermediate resonance in the $p \pi^{0}$ mass spectra. The interferences with other resonances are included.
[5] N. Isgur and G. Karl, Phys. Rev. D 19, 2653 (1979).
[6] S. Stepanyan et al. (CLAS Collaboration) Phys. Rev. Lett. 91, 252001 (2003)
[7] I. Horn et al. (CB-ELSA Collaboration) Phys. Rev. Lett. 101, 202002 (2008)
[8] E. F. McNicoll et al. (Crystal Ball Collaboration at MAMI) Phys. Rev. C 82, 035208 (2010)
[9] H. B. Li et al. (BES Collaboration), Nucl. Phys. A 675, 189C (2000).
[10] J. Z. Bai et al. (BES Collaboration), Phys. Lett. B 510, 75 (2001).
[11] R. Koniuk and N. Isgur, Phys. Rev. D 21, 1868(1980).
[12] S. Capstick and W. Roberts, Phys. Rev. D 49, 4570(1994).
[13] S. Weinberg, Phys. Rev. D 11, 3583 (1975).
[14] G. 't Hooft, Phys. Rev. D 14 (1976) 3432 [Erratum-ibid. D 18 (1978) 2199].
[15] G. R. Kalbfleisch et al., Phys. Rev. Lett. 12, 527 (1964).
[16] M. Goldberg et al., Phys. Rev. Lett. 12, 546 (1964).
[17] J. Gasser, H. Leutwyler, Nucl. Phys. B 250, 465 (1985).
[18] P. Naik et al. [CLEO Collaboration], Phys. Rev. Lett. 102, 061801 (2009).
[19] D. Parashar, Phys. Rev. D 19, 268 (1979).
[20] Feng-Kun Guo, Bastian Kubis and Andreas Wirzba, Phys. Rev. D 85, 014014 (2012).
[21] M. Ablikim et al. (BESIII Collaboration), Chin. Phys. C 36, 915 (2012).
[22] M. Ablikim et al. [BESIII Collaboration], Nucl. Instrum. Methods Phys. Res. A 614, 345 (2010).
[23] J. Z. Bai et al. (BES Collaboration), Nucl. Instrum. Meth. A 344, 319 (1994); Nucl. Instrum. Meth. A 458, 627 (2001).
[24] M. Ablikim et al. [BESIII Collaboration], Phys.Rev.D 87, 092009 (2013).
[25] J. Z. Bai et al. (BES Collaboration), Phys. Rev. D 68, 052003 (2003).
[26] M. Ablikim et al. (BES Collaboration), Phys. Lett. B 642, 441 (2006).
[27] M. Ablikim et al. (BES Collaboration), Phys. Lett. B 607, 243 (2005).
[28] J. Beringer, et al. (Particle Data Group), Phys. Rev. D 86, 010001 (2012).
[29] R. M. Baltrusaitis et al. (MARKIII Collaboration), Phys. Rev. Lett. 56, 107 (1986).
[30] J. Z. Bai et al. (BES Collaboration), Phys. Rev. Lett. 81, 1179 (1998).
[31] M. Ablikim et al. (BES Collaboration), Phys. Rev. Lett. 110, 022001 (2013)
[32] J. C. Chen, G. S. Huang, X. R. Qi, D. H. Zhang and Y. S. Zhu, Phys. Rev. D 62, 034003 (2000).
[33] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 88, 032010 (2013)
[34] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 87, 012007 (2013)
[35] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 86, 032008 (2012)
[36] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 86, 052011 (2012)
[37] M. Ablikim et al. [BESIII Collaboration], Phys. Rev. D 112, 251801 (2014)

