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Abstract. Stars having a quark core surrounded by a mixed phase followed by hadronic
matter are termed as hybrid stars(HS). For the equation of state(EOS) of hadronic matter,
we have considered RMF(Relativistic Mean Field) theory, in the presence of strong magnetic
fields leading to Landau quantization of the charged particles. For the EOS of quark phase
we have used the simple MIT bag model also in presence of strong magnetic field. The bag
pressure and magnetic field are parametrized to make density dependant. We have constructed
the intermediate mixed phase by using Glendenning conjecture. The EOSs are constructed
comprising the hadron, mixed and quark phases. Eigenfrequencies of radial pulsations of slowly
rotating magnetised hybrid star are calculated using constructed EOSs in a general relativistic
formalism given by Chandrasekhar and Friedman.

1. Introduction
If the central density of neutron stars exceed the nuclear saturation density (n0 ∼ 0.15 fm−3),
then the compact stars might contain deconfined quark matter in them. So along with the
hadronic matter, HS have quark matter in their interior. In between the quark and hadronic
phases, a quark-hadron mixed phase exists. The size of the core depends on the critical density
for the quark-hadron phase transition and the EOS, describing the matter phases.

Recently[1] the mass measurement of millisecond pulsar PSR J1614-2230 and pulsar
J1903+0327 have set a new mass limit for compact stars to be M = 1.97 ± 0.04 M� and
M = 1.667±0.021M�, respectively[2]. This measurement for the first time has set a very strong
limit on parameters of the EOS of the matter under extreme conditions [3, 4]. New observations
suggest that in some pulsars, the surface magnetic field can be as high as 1014 − 1015G. It has
also been noticed that the observed giant flares, SGR 0526-66, SGR 1900+14 and SGR 1806-20
[5], are the manifestation of such strong surface magnetic field in those stars. If we assume
flux conservation from a progenitor star, we can expect the central magnetic field as high as
1017−1018G. Such strong fields are bound to effect the properties of HS. It can modify the EOS
of matter of the star. The effect of strong magnetic field, both for nuclear matter [6, 7, 8, 9, 10]
and quark matter [11, 12, 13] have been studied earlier in detail.

Cameron [14] had suggested that vibration of neutron stars could excite motions that can have
interesting astrophysical applications, there have been several investigations of the vibrational
properties of neutron stars. Simple dimensional analysis suggests that the fundamental mode
period of a vibrating neutron star would be of the order of milliseconds[15]. Typical neutron star
model with mass about one solar mass and radius about 10 km give periods (3–5)ms, and the



period is relatively insensitive to the exact value of the central density [16]. Since the rotation
is a general property of all stellar bodies, it is interesting to study the normal modes of rotating
HS. The determination of normal mode frequencies of a rotating HS is non trivial.

The value of period of oscillation strictly depends on the EOS along with some constraints
on the parameters in both hadron and quark phase. Here we have investigated the effect of
magnetic field on EOSs of both the matter phases (quark phase and hadron phase). Then we
have constructed the mixed phase EOS in presence of strong magnetic field. Eigenfrequencies of
radial pulsations of slowly rotating magnetised hybrid star are calculated in a general relativistic
formalism given by Chandrasekhar & Friedman [17]. We have studied the square of the
frequencies of the slowly rotating HS in the presence of strong magnetic field for various central
densities.

2. Formalism
We have considered charge neutral, beta equilibrated matter. For the magnetic field we choose
the gauge to be, Aµ ≡ (0,−yB, 0, 0), B being the magnitude of magnetic field. The momentum
of the charged particles in x-y plane is quantized and hence the energy of the nth Landau level
is [18] given by

Ei =
√
pi2 +mi

2 + |qi|B(2n+ s+ 1), (1)

where n=0, 1, 2, ..., being the principal quantum numbers for allowed Landau levels, s = ±1
refers to spin up(+) and down(-) and pi is the component of particle(species i) momentum along
the field direction. Setting 2n+s+1 = 2ν̃, where ν̃ = 0, 1, 2..., we can rewrite the single particle
energy eigenvalue in the following form

Ei =
√
pi2 +mi

2 + 2ν̃|qi|B =
√
pi2 + m̃2

i,ν̃ , (2)

where the ν̃ = 0 state is singly degenerate. The total energy density and pressure of the hadronic
matter in presence of strong magnetic field can be written as, [19]
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where the last term in εHP is the contribution from the magnetic field.
The total energy density and pressure of the quark matter is given by [19],

εQP =
∑
i

Ωi +BG +
∑
i

niµi, PQP = −
∑
i

Ωi −BG, (4)

where BG is the bag constant. With the above given hadronic and quark EOS, we now perform
the Glendenning construction [20] for the mixed phase, which determines the range of baryon
density, where both phases coexist. Allowing both the hadron and quark phases to be separately
charged, and still preserving the total charge neutrality as a whole in the mixed phase. Thus the
matter can be treated as a two-component system, and can be parametrized by two chemical
potentials, usually the pair (µe, µn), i.e., electron and baryon chemical potential. To maintain
mechanical equilibrium, the pressure of the two phases are equal. Satisfying the chemical and
beta equilibrium the chemical potential of different species are connected to each other. The
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Figure 1: (a)Pressure (MeV /fm3) against energy density (MeV /fm3) for zero and non zero value of magnetic field.
B=0 (dotted line) and B=1017G (solid line). (b) Gravitational mass in solar mass unit against central density (g cm−3)
for zero and non zero value of magnetic field. B=0 (dotted line) and B=1017G (solid line).

Gibbs condition for mechanical and chemical equilibrium at zero temperature between both
phases are given by

PHP(µe, µn) = PQP(µe, µn) = PMP. (5)

This equation gives the equilibrium chemical potentials of the mixed phase corresponding to the
intersection of the two phases. At lower densities below the mixed phase, the system is in the
charge neutral hadronic phase, and for higher densities above the mixed phase, the system is
in the charge neutral quark phase. As the two surfaces intersect, one can calculate the charge
densities ρHP

c and ρQP
c separately in the mixed phase. If χ is the volume fraction occupied by

quark matter in the mixed phase, we have

χρQP
c + (1− χ)ρHP

c = 0. (6)

Therefore the energy density εMP and the baryon density nMP of the mixed phase can be
obtained as

εMP = χεQP + (1− χ)εHP, nMP = χnQP + (1− χ)nHP. (7)

We parametrized the bag constant and magnetic field strength as given in Ref.[19].
The formalism given by Chandrasekhar & Friedman [17] is a fully general relativistic one

to calculate the effect of rotation (to order Ω2, where Ω is the angular velocity of rotation)
on the eigenfrequencies of radial pulsations of stars. It gives an exact formula to calculate the
frequency (σ′) of oscillations of a ‘slowly’ rotating stellar configuration. The Chandrasekhar-
Friedman formula is of the form:

σ′
2
I1 = I2 + I3 + I4. (8)

The detail mathematical expression of I1, I2, I3, I4 are given in Ref.[21].
The equations governing infinitesimal radial pulsations of a non-rotating star in general

relativity was given by Chandrasekhar [22], and it has the following form :

F
d2ξ

dr2
+G

dξ

dr
+Hξ = σ̃2ξ. (9)

Here ξ(r) is the Lagrangian fluid displacement and cσ̃ is the characteristic eigenfrequency (c is
the speed of light). The quantities F,G,H depend on the equilibrium profiles of the pressure p
and density ρ of the stars. The details are given in Ref.[15].



Table 1: Pulsation frequency for non-rotating and rotating HS as a function of central density ρc for n=0, 1 and 2 radial
modes in absence and presence of magnetic field.

ρc n (Without magnetic field) (With magnetic field)

1015 g cm−3 M/M0 σ̃2(108s−2) σ′2(108s−2) M/M0 σ̃2(108s−2) σ′2(108s−2)

0.25 0 0.32 5.11 6.31 0.32 5.10 5.78
1 13.30 7.66 13.92 8.20
2 36.38 2.48 38.12 2.62

0.5 0 0.56 3.38 1.13 0.60 3.92 1.33
1 25.05 1.90 26.26 2.22
2 62.04 5.09 64.54 5.92

1 0 1.16 9.53 -2.65 1.26 10.25 1.75
1 41.53 2.68 47.43 3.08
2 104.71 8.56 111.98 9.03

1.5 0 1.67 10.18 2.03 1.54 7.61 -5.83
1 49.58 5.25 49.72 2.75
2 127.01 1.03 102.64 8.83

2 0 1.77 8.40 -1.52 1.61 6.49 -1.69
1 34.34 3.42 34.37 2.02
2 85.88 9.84 83.39 5.49

2.5 0 1.78 6.50 -3.11 1.62 5.40 -2.66
1 29.04 2.29 26.79 1.58
2 71.62 8.52 71.39 4.43

For a given EOS P (ρ) and given central density, we solved TolmanOppenheimerVolkoff
(TOV)[23] equations to obtain the radius R and mass M = m(R) of the star. Therefore the
basic input to solve the structure and pulsation equations is the EOS, P = P (ρ). It has been
seen [24] that structure parameters of neutron stars are mainly dominated by the EOS at high
densities, specifically around the core. Since the oscillation features are governed by structure
profiles of neutron stars, it is expected to possess marked sensitivity on the high density EOS
as well.

3. Results and Discussion
The results of our calculation are presented in Fig.1a, Fig.1b and Table 1. In Fig.1a, we have
plotted pressure against energy density having density dependent bag pressure 170MeV [19]. It is
clear that magnetic field softens the EOS as well as broadens the mixed phase region. In Fig.1b,
we have plotted gravitational mass(in solar mass unit) against central density for zero and non
zero value of magnetic field. The maximum gravitational mass of HS for non-magnetic case is
1.8 solar mass and for magnetic case is 1.6 solar mass, which are close to observed values [2]. In

Table 1 we have presented a calculation of the square of frequencies (σ̃2 and σ′2) of magnetised
and non-magnetised hybrid star as a function of central densities for fundamental mode and for
the first two harmonics by using the radial pulsation equations of non-rotating HS, as given by
Chandrasekhar [22] as well as for rotating HS as given by Chandrasekhar and Friedman [17] in
the general relativity formalism. Due to mixed phase region which is transition from quark to
hadron phase, a kink is observed in the frequency with increase in central density. These kinks
can be considered as a distinct signature of the mixed and quark matter in neutron stars. In both
magnetic and non-magnetic cases for non-rotating HS there is a kink at ρc = 0.5×1015g cm−3 in
fundamental mode, then frequency increases and decreases slowly with increasing central density



and for other two higher harmonics there is no remarkable kink but frequency increases and then
slowly decreases with central density. In absence of magnetic field for rotating HS there is an
oscillating behaviour of square of frequency starting at central density ρc = 0.5 × 1015g cm−3

for all modes. In presence of magnetic field for the rotating HS there is an oscillating behaviour
in square of frequency for first two modes and then slowly decreases but for next mode square
of frequency increases and decreases with central density. These behaviour are observed due to
presence of mixed and quark matter in HS.
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