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Abstract. We discuss the prospects of computing thermal dilepton rates from first principles
lattice QCD. The focus lies in the determination of the meson vector-vector current spectral
function to estimate the electrical conductivity, heavy quark diffusion and quarkonium
dissociation. We review and compare recent results from continuum-extrapolated, quenched
calculations, as well as dynamical two-flavor setups.

1. Electromagnetic spectral function in heavy-ion collisions
Heavy-ion collision experiments such as those carried out at RHIC, LHC and the future facilities
at FAIR probe nuclear matter under extreme conditions, i.e. at high temperatures and/or baryon
densities. Given the possible applications there has been a large effort from the phenomenological
and theoretical communities to work out the properties of relevant observables in QCD, for
recent reviews see [1, 2]. One of these is the spectral function of the electromagnetic current
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in vacuum it is accessible to experiments from the R-ratio via the optical theorem
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Conversely the spectral function determines the production rate of lepton-antilepton pairs:
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The low frequency part of the spectral function is related to the transport properties of the
medium. For example, in the high temperature phase and for light vector mesons, the spatial
components give the response of the quark-gluon plasma (QGP) to electromagnetic fields and
the soft emission rate of photons
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For heavy quark vector mesons the same limit gives the heavy quark diffusion coefficient D:
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where χq is the quark number susceptibility. For heavy quarkonia the spectral function around
threshold of not only the vector but also the other possible channels is especially interesting,
since the dissociation pattern can be used to define a QGP-thermometer [3].

The spectral function is related to Euclidean current-current correlation functions by the
integral transform:
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where β = 1/T and we define the kernel K(ω, x0, T ) = cosh[ω(β/2 − x0)]/ sinh(ωβ/2). This
connection opens the possibility to study the spectral function indirectly via lattice QCD. The
central question is, how well the numerically ill-posed inverse transform to obtain the spectral
function can be controlled. In this talk, I review a selection of recent results from different lattice
approaches to tackle this issue and the insights on the underlying physics phenomena gained in
this way.

2. Meson correlation functions from lattice QCD
In lattice QCD, observables are computed on a set of gauge field configurations generated via
Monte-Carlo methods and the discretized QCD action. The correlation functions of two mesonic
(vector) currents at vanishing momentum is

Gµν(x0, T ) =

∫
d3x〈Jµ(x0, ~x)Jν(0,~0)†〉 , (7)

whereby here Jµ(x) = 1√
2

(
ū(x)γµu(x)− d̄(x)γµd(x)

)
is the isospin current with only quark-line

connected diagrams contributing1. In practice, computing this quantity on the lattice involves
setting up an appropriate interpolating creation operator at the source (0,~0) and correlating it
with a corresponding annihilation operator at the sink (x0, ~x) located within the four-volume of
the background gauge-field configurations. To obtain a physically meaningful result the so-called
”gauge average” has to be taken:
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in the limit of infinitely many configurations this corresponds to computing the path integral
over all possible gauge field backgrounds.

3. Spectral function reconstruction
The process of reconstructing the spectral function from lattice correlator data is made more
difficult by the kernel K(ω, x0, T ). As such it highly suppresses the features of the spectral
function itself and renders the correlator largely insensitive to them. For example, in [5, 6] mock
data studies could show the difference in the correlator at the midpoint of the lattice between a

1 Note, a recent estimate of the disconnected contribution [4] could show the isospin and electromagnetic
correlators to be the same for distances up to a . 1.5 fm
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Figure 5.19: Electrical conductivity for temperatures 1.1 Tc, 1.2 Tc and 1.4 Tc, with sys-
tematic error estimates as laid out in section 5.6.2, with a maximal ω0 = 1.5 and
∆ω = 0.1, see also tables 5.5 and 5.6. To compare the temperature dependence, re-
sults are given in units of temperature T (left) and in units of the critical temperature
Tc (right).

correlators normalized by the quark number susceptibility as T 2 ·Gii(τT )/χq ·Gfree
V (τT ).

The ratios are smooth so they allow for a cubic spline interpolation on the coarser
lattices. The continuum extrapolation is well behaved and removes lattice cutoff effects
down to distances τT = 0.125 at 1.1 Tc and τT = 0.142 at 1.2 Tc.
Spectral functions have been extracted successfully from the continuum extrapolated

correlators at all three temperatures by using a phenomenologically motivated ansatz.
This rather simple ansatz, consisting of a Breit-Wigner peak and a continuum contri-
bution, see eq. (5.7), is found to provide a good descriptions of the data set at all three
temperatures.
A systematic error analysis was performed via a parametrized modification of the

ansatz, by truncating the continuum contributions, see eq. (5.19). It is found that an
increasing continuum cutoff can not be fully compensated by an enhanced Breit-Wigner
peak, thus the truncated ansatz yields an inferior description of the data set. This allows
to find an upper limit for the Breit-Wigner contribution.
The spectral function is linked to the dilepton rate, which thus can be calculated for

all three temperatures. A summarizing plot of the spectral functions and associated
dilepton rates is provided in fig. 5.13.
In the low frequency limit, the spectral function also gives access to the electrical

conductivity as an important transport coefficient. With the systematic error estimates
in place, lower and upper bounds for the electrical conductivity have been calculated.
Within these limits, the conductivity shows no clear temperature dependence, see

fig. 5.19. The systematic error analysis – as currently employed – implies a low limit
for the electrical conductivity at each temperature. The upper limit is influence by

108

Figure 1. Left: Collected results on the electrical conductivity of the QGP across the
deconfinement phase transition, provided in [8]. Right: A recent update on the electrical
conductivity in the continuum limit of quenched QCD [20].

strongly peaked, i.e. bound state, and a flat, i.e. un-bound, spectral function is at the 5%-level.
Taking this as an optimistic lower bound, it follows that, the lattice data has to be more precise
than this value.
With precision data available, two approaches have been widely adapted to reconstruct the
spectral function. The first is the ”Maximum Entropy Method” (MEM) [7]. Here Bayes’
theorem is invoked to determine the most probable spectral function given the data and a
so-called default model. Commonplace algorithms maximize an entropy term to determine the
coefficients c(k) of a set of transformed basis functions L(B(k)) to obtain an approximation of
the spectral function based on the correlator data,
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since the inverse transformation of the basis functions is known, one thereby obtains also an
estimate of the spectral function. The greatest caveat of this method is the dependence on the
default model. Alternatively, instead of fixing the basis functions and determining their weights,
one can define the basis functions by a set of Ansätze F (ak) for the spectral function, i.e.

G(x0) =
∑
k

L
(
F (ak, ω), x0

)
⇒ ρ(ω) =
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Naturally, in this case the Ansätze introduce a model-dependence and have to be justified.
Generally phenomenological considerations enter the analysis at this point. Since both methods
introduce a difficult to estimate degree of systematic uncertainty, due to the ill-posed nature of
the inverse transformation, cross-checks using multiple approaches are mandatory.

3.1. Electrical conductivity across deconfinement and in the quenched continuum
In the case of the light vector meson spectral function and especially the electrical conductivity
of the QGP a number of calculations is available, using both MEM and Ansätze for the
reconstruction. In Fig. 1(left) we show a collection of results on σem(T )/T recently published2

in [8]. Here, the first determination using staggered fermions in quenched QCD and using

2 Note, the charge factor
∑

f Q
2
f is neglected in the figure.



Figure 2. The vector charmonium spectral function over ω2 (left) and ω (right) computed
on large, quenched ensembles using MEM [14]. Left: The existence/non-existence of peaks is
indicative of dissociation. Right: The linear intercept gives the heavy quark diffusion coefficient.

MEM for reconstruction [9] is shown in brown. Also in the quenched approximation, but using
Wilson-Clover fermions, results using the Ansatz-method extrapolated to the continuum limit
are given in black [10]. In the dynamical sector results obtained using ensembles with two
light quark flavors of Wilson-Clover fermions and a pion mass mπ ' 270 MeV are given in blue
[11]. This calculation made use of the Ansatz-method and additionally incorporated QCD sum
rules for further constraints on the spectral function. Finally, in yellow and red, results on
anisotropic ensembles with two light and one strange quark flavor of Wilson-Clover fermions at
mπ ' 400 MeV are shown [8]. This study also uses MEM to reconstruct the spectral function.
Recently, also the analysis using the Ansatz-method in the continuum limit of quenched QCD was
updated [13, 20] to cover a temperature range of T/Tc ∈ [1.1 : 1.5], see Fig. 1(right). Throughout,
a consistent picture is emerging towards the value of σem, especially in the T/Tc ' 1.5 region.
In the quenched continuum limit no clear temperature dependence can be observed, while there
is a consistent drop in the dynamical case. This might be due to to different natures of the
deconfinement phase transitions in these two theories and is under current investigation.

3.2. Heavy quark diffusion and quarkonium dissociation
In the case of heavy mesons, [14] used MEM to study the dissociation Fig. 2(left) and the
diffusion coefficient 2(right) of charmonia on large, quenched lattices. Here, the J/Ψ was found
to dissociate below T/Tc ' 1.5, while the heavy quark diffusion coefficient was found to be
κ/T 3 ∈ [4 : 7]. A determination based on effective field theory methods [15] in the continuum
limit [16] reconstructing using an Ansatz, shown in Fig. 3(left), found κ/T 3 = 2.5(4), in line
also with [17, 18, 19, 20]. This discrepancy is currently under investigation. Using NRQCD
to determine the correlation functions for bottomonia [21, 22], the Υ-peak was observed for
temperatures up to T/Tc ' 1.9, whereby using MEM for reconstruction, see Fig. 3(right). The
emerging picture from these studies, and others not shown here e.g. [23, 24], indicates a faster
dissociation of charmonia above Tc than previously thought, while bottomonia persist to larger
temperatures, as expected.

4. Conclusions
In this talk I outlined the basic steps required to reconstruct spectral functions from Euclidean,
lattice QCD, current-current correlation functions. The two most widely used methods for
reconstruction used were also commented on. Focusing on vector mesons, the applications in
heavy-ion collision physics were highlighted and a selection of studies was discussed aiming at
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Figure 3. Left: The electric force correlator can be used to estimate heavy quark diffusion
[15]. The black curve shows the result extrapolated to the continuum [16]. Right: Bottomonium
spectral functions determined using NRQCD across the deconfinement phase transition [21].

providing an overview to the current status from lattice QCD. We observe an emerging agreement
on the value of the electrical conductivity at large temperatures from different approaches and
a fast dissociation of charmonia above the deconfinement temperature. At the same time
bottomonia are seen to persist to larger temperatures. In the case of heavy quark diffusion
and the electrical conductivity around the deconfinement transition work is still needed to pin
down any additional systematic uncertainties. These studies are currently underway.
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